Ⅰ 低温等离子体的产生方法
辉光放电,电晕放电,介质阻挡放电,射频放电,滑动电弧放电,射流放电,大气压辉光放电,次大气压辉光放电
辉光放电(GlowDischarge)辉光放电属于低气压放电(low pressure discharge),工作压力一般都低于10mbar,其构造是在封闭的容器内放置两个平行的电极板,利用电子将中性原子和分子激发,当粒子由激发态(excited state)降回至基态(ground state)时会以光的形式释放出能量。电源可以为直流电源也可以是交流电源。每种气体都有其典型的辉光放电颜色(如下表所示),荧光灯的发光即为辉光放电。因此,实验时若发现等离子的颜色有误,通常代表气体的纯度有问题,一般为漏气所至。辉光放电是化学等离子体实验的重要工具,但因其受低气压的限制,工业应用难于连续化生产且应用成本高昂,而无法广泛应用于工业制造中。到2013年止的应用范围仅局限于实验室、灯光照明产品和半导体工业等 。
部分气体辉光放电的颜色 Gas Cathode Layer Negative Glow Positive Column He
Ne(neon)
Ar
Kr
Xe
H2
N2
O2
Air red
yellow
pink
-
-
red-brown
pink
red
pink pink
orange
dark-blue
green
orange-green
thin-blue
blue
yellow-white
blue Red-pink
red-brown
dark-red
blue-purple
white-green
pink
red-yellow
red-yellow
red-yellow 电晕放电(CoronaDischarge)
气体介质在不均匀电场中的局部自持放电。是最常见的一种气体放电形式。在曲率半径很小的尖端电极附近,由于局部电场强度超过气体的电离场强,使气体发生电离和激励,因而出现电晕放电。发生电晕时在电极周围可以看到光亮,并伴有咝咝声。电晕放电可以是相对稳定的放电形式,也可以是不均匀电场间隙击穿过程中的早期发展阶段 。电晕放电的形成机制因尖端电极的极性不同而有区别,这主要是由于电晕放电时空间电荷的积累和分布状况不同所造成的。在直流电压作用下,负极性电晕或正极性电晕均在尖端电极附近聚集起空间电荷。在负极性电晕中,当电子引起碰撞电离后,电子被驱往远离尖端电极的空间,并形成负离子,在靠近电极表面则聚集起正离子。电场继续加强时,正离子被吸进电极,此时出现一脉冲电晕电流,负离子则扩散到间隙空间。此后又重复开始下一个电离及带电粒子运动过程。如此循环,以致出现许多脉冲形式的电晕电流,电晕放电可以在大气压下工作,但需要足够高的电压以增加电晕部位的电场。一般在高压和强电场的工作条件下,不容易获得稳定的电晕放电,亦容易产生局部的电弧放电(arc)。为提高稳定性可将反应器做成非对称(asymmetric)的电极形式(如下图所示)。电晕放电反应器的设计主要参考电源的性质而有所不同,有直流电晕放电(DC corona)和脉冲式(pulsed corona)电晕放电。利用电晕放电可以进行静电除尘、污水处理、空气净化等。地面上的树木等尖端物体在大地电场作用下的电晕放电是参与大气电平衡的重要环节。海洋表面溅射水滴上出现的电晕放电可促进海洋中有机物的生成,还可能是地球远古大气中生物前合成氨基酸的有效放电形式之一。针对不同应用目的研究,电晕放电是具有重要意义的技术课题 。
介质阻挡放电(Dielectric Barrier Discharge,DBD)
介质阻挡放电(DBD)是有绝缘介质插入放电空间的一种非平衡态气体放电又称介质阻挡电晕放电或无声放电。介质阻挡放电能够在高气压和很宽的频率范围内工作,通常的工作气压为10~10。电源频率可从50Hz至1MHz。电极结构的设计形式多种多样。在两个放电电极之间充满某种工作气体,并将其中一个或两个电极用绝缘介质覆盖,也可以将介质直接悬挂在放电空间或采用颗粒状的介质填充其中,当两电极间施加足够高的交流电压时,电极间的气体会被击穿而产生放电,即产生了介质阻挡放电。在实际应用中,管线式的电极结构被广泛的应用于各种化学反应器中,而平板式电极结构则被广泛的应用于工业中的高分子和金属薄膜及板材的改性、接枝、表面张力的提高、清洗和亲水改性中 。
介质阻挡放电通常是由正弦波型(sinusoidal)的交流(alternatingcurrent, AC)高压电源驱动,随着供给电压的升高,系统中反应气体的状态会经历三个阶段的变化,即会由绝缘状态(insulation)逐渐至击穿(breakdown)最后发生放电。当供给的电压比较低时,虽然有些气体会有一些电离和游离扩散,但因含量太少电流太小,不足以使反应区内的气体出现等离子体反应,此时的电流为零。随着供给电压的逐渐提高,反应区域中的电子也随之增加,但未达到反应气体的击穿电压(breakdown voltage; avalanche voltage)时,两电极间的电场比较低无法提供电子足够的能量使气体分子进行非弹性碰撞,缺乏非弹性碰撞的结果导致电子数不能大量增加,因此,反应气体仍然为绝缘状态,无法产生放电,此时的电流随着电极施加的电压提高而略有增加,但几乎为零。若继续提高供给电压,当两电极间的电场大到足够使气体分子进行非弹性碰撞时,气体将因为离子化的非弹性碰撞而大量增加,当空间中的电子密度高于一临界值时及帕邢(Paschen)击穿电压时,便产生许多微放电丝(microdischarge)导通在两极之间,同时系统中可明显观察到发光(luminous)的现象此时,电流会随着施加的电压提高而迅速增加 。在介质阻挡放电中,当击穿电压超过帕邢(Paschen)击穿电压时,大量随机分布的微放电就会出现在间隙中,这种放电的外观特征远看貌似低气压下的辉光放电,发出接近兰色的光。近看,则由大量呈现细丝状的细微快脉冲放电构成。只要电极间的气隙均匀,则放电是均匀、漫散和稳定的。这些微放电是由大量快脉冲电流细丝组成,而每个电流细丝在放电空间和时间上都是无规则分布的,放电通道基本为圆柱状,其半径约0.1~0.3mm,放电持续时间极短,约为10~100ns,但电流密度却可高达0.1~1kA/cm,每个电流细丝就是一个微放电,在介质表面上扩散成表面放电,并呈现为明亮的斑点。这些宏观特征会随着电极间所加的功率、频率和介质的不同而有所改变。如用双介质并施加足够的功率时,电晕放电会表现出“无丝状”、均匀的兰色放电,看上去像辉光放电但却不是辉光放电。这种宏观效应可通过透明电极或电极间的气隙直接在实验中观察到。当然,不同的气体环境其放电的颜色是不同的 。虽然介质阻挡放电已被开发和广泛的应用,可对它的理论研究还只是近20年来的事,而且仅限于对微放电或对整个放电过程某个局部进行较为详尽的讨论,并没有一种能够适用于各种情况DBD的理论。其原因在于各种DBD的工作条件大不相同,且放电过程中既有物理过程,又有化学过程,相互影响,从最终结果很难断定中间发生的具体过程 。由于DBD在产生的放电过程中会产生大量的自由基和准分子,如OH、O、NO等,它们的化学性质非常活跃,很容易和其它原子、分子或其它自由基发生反应而形成稳定的原子或分子。因而可利用这些自由基的特性来处理VOCs,在环保方面也有很重要的价值。另外,利用DBD可制成准分子辐射光源,它们能发射窄带辐射,其波长覆盖红外、紫外和可见光等光谱区,且不产生辐射的自吸收,它是一种高效率、高强度的单色光源。在DBD电极结构中,采用管线式的电极结构还可制成臭氧O3发生器。21世纪的人们已越来越重视对DBD的研究与应用 。 物 质 介电系数 绝缘强度(kV/mm) Vacuum
Air
Amber
Bakelite
Fused Quartz
Neoprene
Nylon
Paper
Polyethylene
Polystyrene
Porcelain
Pyranol Oil
Pyrex Glass
Ruby Mica
Silicone Oil
Strontium Titanate
Teflon
Titanium Dioxide
Water (20℃)
Water (25℃) 1.00000
1.00054
2.7
4.8
3.8
6.9
3.4
3.5
2.3
2.6
6.5
4.5
4.5
5.4
2.5
233
2.1
100
80.4
78.5 Infinity
0.8
90
12
8
12
14
14
50
25
4
12
13
160
15
8
60
6
-
- 常见物质的介电系数和绝缘强度
射频低温等离子体放电(RadioFrequency Plasma Discharge)
射频低温等离子体是利用高频高压使电极周围的空气电离而产生的低温等离子体。由于射频低温等离子的放电能量高、放电的范围大,现在已经被应用于材料的表面处理和有毒废物清除和裂解中。射频等离子可以产生线形放电,也可以产生喷射形放电 。
滑动电弧放电(Glide Arc Discharge or PlasmaArc)产生低温等离子体
滑动电弧放电等离子体通常应用于材料的表面处理和有毒废物清除和裂解。下图中的滑动电弧由一对像图中所示的延伸弧形电极构成。电源在两电极上施加高压引起电极间流动的气体在电极最窄部分电击穿。一旦击穿发生电源就以中等电压提供足以产生强力电弧的大电流,电弧在电极的半椭圆形表面上向右膨胀,不断伸长直到不能维持为止。电弧熄灭后重新起弧,周而复始。其视觉观看滑动电弧放电等离子体就像火焰一般,但其平均温度却比较低即使将餐巾纸放在等离子体焰上也不会燃烧。它又被称为“索梯”(Jacog's Ladder)。滑动电弧放电产生的低温等离子体为脉冲喷射,但可以得到比较宽的喷射式低温等离子体炬(plasma torch) 。
射流低温等离子放电(Jet Discharge)
几十年来,等离子体炬(plasma torch)的个工业应用已经众所周知,例如,氩弧焊、空气等离子体切割机和等离子体喷涂等。这些设备中的核心部件通常称为等离子体炬,其等离子体中心温度达数千度,是热等离子体。近年来,人们为了进行有机材料,例如橡胶表面进行处理,以改善表面附着力,将等离子体炬的技术低温化和小型化,将热弧变为冷弧研制成射流低温等离子表面处理设备,喷枪出口温度仅数网络,甚至更低,并且已经开始向家用电器和汽车工业推广应用。有些高技术公司,例如中国的CORONA Lab.将这种技术产品化,可以用于高速在线处理 。1.大气射流低温等离子表面处理的原理流经冷弧等离子体射流枪的空气气流可以产生包括大量的氧原子在内的氧基活性物质,氧基等离子体照射材料表面,可以使附着于材料表面上的有机污染物C元素的分子分离,并变成二氧化碳后被清除;同时可以提高接触性能,从而可以提高接合强度和可靠性。2.大气射流低温等离子表面处理的工业应用a)不锈钢薄板对焊处的焊前处理不锈钢薄板对焊在工业中应用很普遍,例如太阳能热水器的内桶就是用0.4mm的不锈钢薄板卷成圆筒对焊制成。为了达到焊接要求,必须对焊接处进行必要的清洗。目前的清洗方法是湿法-人工用化学清洗剂擦洗,清洗成本高,有污染,很难实现自动化。大气射流低温等离子清洗技术是干法,运用于薄板对焊的前处理,可代替传统的人工用化学清洗剂擦拭,降低了清洗成本,可提高焊接质量,减少对环境的污染,可实现焊接区清洗的自动化。b)塑料板的表面处理塑料类,例如木塑是可以代用木材的新型材料,但表面油漆相当不易,这就大大限制了应用范围。如果用化学方法处理,价格高,污染大。为此,用大气射流低温等离子处理则材料表面会发生明显的变化:颜色略有变浅,反光度降低,呈亚光性;用手触摸可以感觉到表面略有粗糙;使喷漆的附着性能大大增强。经等离子体处理前后的附着力可以测试。测试方法:用划刀在待测部件表面划出垂直井字结构划痕,用软毛刷轻刷划线表面去掉碎沫。用透明胶带贴于划线上,胶带与样品间应无气泡,保持1~2分钟;以约60度角度恒定速度将胶带撕起。观察划线及正方形的完整度以判断附着力的大小。c)橡胶制品的处理橡胶在我们日常生活中大量使用,例如汽车的门封条。它的表面须要上漆或织绒。如果不经过低温等离子处理,则不易粘接。如果用化学清洗,既是离线的,又会污染环境。用在线等离子体处理是理想的解决办法。d)用于玻璃和金属平板处理空气等离子体射流可以处理玻璃和金属表面,不但有效地清除了来自于大气中浮游灰尘产生的有机污染物,而且改变了表面的性能且持续性足够长。因而可以提高产品的接合强度。此外,常压等离子体清洗还可以用于有机材料和金属材料表面 。
大气压下辉光放电(APGD)
经过近20年的发展,低气压低温等离子体已取得了很大进展。但由于其运行需抽真空、设备投资大、操作复杂、不适于工业化连续生产,限制了它的广泛应用。显然,最适合于工业生产的是大气压下放电产生的等离子体。大气压下的电晕放电和介质阻挡放电目前虽然被广泛地应用于各种无机材料、金属材料和高分子材料的表面处理中,但却不能对各种化纤纺织品、毛纺织品、纤维和无纺布等材料进行表面处理。低气压下的辉光放电虽然可以处理这些材料,但存在成本、处理效率等问题,目前无法规模化应用于纺织品的表面处理。长期以来人们一直在努力实现大气压下的辉光放电(APGD)。1933年德国VonEngel首次报道了研究结果 ,利用冷却的裸电极在大气压氢气和空气中实现了辉光放电,但它很容易过渡到电弧,并且必须在低气压下点燃,即离不开真空系统。1988年,Kanazawa等人报道了在大气压下使用氦气获得了稳定的APGD的研究成果,并通过实验总结出了产生APGD要满足的三个条件:(1)激励源频率需在1kHz以上;(2)需要双介质DBD;(3)必须使用氦气气体。此后,日本的Okazaki、法国的Massines和美国的Roth研究小组分别采用DBD的方法,用不同频率的电源和介质,在一些气体和气体混合物中宣称实现了大气压下“APGD”。1992年,Roth小组在5mm氦气间隙实现了APGD,并声称在几个毫米的空气间隙中也实现了APGD,主要的实验条件为湿度低于15%、气体流速50l/min、频率为3kHz的电源并且和负载阻抗匹配。他们认为“离子捕获”是实现APGD的关键。Roth等人用离子捕获原理解释APGD,即当所用工作电压频率高到半个周期内可在极板之间捕获正离子,又不高到使电子也被捕获时,将在气体间隙中留下空间电荷,它们影响下半个周期放电,使所需放电场强明显降低,有利于产生均匀的APGD。他们在实验室的一台气体放电等离子体实验装置中实现了Ar、He和空气的“APGD”。1993年Okazaki小组利用金属丝网(丝直径0.035mm,325目)电极为PET膜(介质)、频率为50Hz的电源,在1.5mm的气体(氩气、氮气、空气)间隙中做了大量的实验,并宣称实现了大气压辉光放电。根据电流脉冲个数及Lisajous图形(X轴为外加电压,Y轴为放电电荷量)的不同,他们提出了区分辉光放电和丝状放电的方法,即若每个外加电压半周期内仅1个电流脉冲,并且Lisajous图形为两条平行斜线,则为辉光放电。若半周期内多个电流脉冲,并且Lisajous图形为斜平行四边形,则为丝状放电。法国的Massines小组、加拿大的Ra小组和俄罗斯的Golubovskii小组对APGD的形成机理也进行了比较深入的研究工作。Massines小组对氦气和氮气的APGD进行了实验研究和数值模拟 ,除了测量外加电压和放电电流之外,他们用曝光时间仅10ns的ICCD相机拍摄了时间分辨的放电图像,用时空分辨的光谱测量记录了放电等离子体的发射光谱,并结合放电过程的一维数值模拟,他们认为,氮气中的均匀放电仍属于汤森放电,而氦气中均匀放电才是真正意义上的辉光放电,或亚辉光放电。他们还认为,得到大气压下均匀放电的关键是在较低电场下缓慢发展大量的电子雪崩。因此,在放电开始前间隙中必须存在大量的种子电子,而长寿命的亚稳态及其彭宁电离可以提供这些种子电子。根据10ns暴光的ICCD拍摄的放电图像,Ra小组发现,在大气压惰性气体He、Ne、Ar、Krypton的DBD间隙中,可以实现辉光放电。除了辉光放电和丝状放电之外,还存在介于前两者之间的第三种放电模式--柱状放电 。从上个世纪末,国内许多单位如科罗纳实验室、清华大学、大连理工大学、华北电力大学、西安交通大学、华中科技大学、中科院物理所、河北师范大学等先后开始了对APGD的研究。由于APGD在织物、镀膜、环保、薄膜材料等技术里域有着诱人的工业化应用前景,在大气压下和空气中实现辉光放电产生低温等离子体一直是国内外学者探寻的研究重点和热点。2003年,国家自然科学基金委员会将“大气压辉光放电”列为国家重点研究项目。APGD的研究也取得了一些进展,如He、Ne、Ar、Krypton惰性气体在大气压下基本实现了APGD,空气也已经实现了用眼睛看上去比较均匀的准“APGD”。目前,对APGD的研究结果和认识是仁者见仁,智者见智。APGD的研究方兴未艾,已经受到国内外许多大学和研究机构的广泛重视。由于大气压辉光放电目前还没有一个认可标准,(只要选择一定的介质阻挡装置、频率、功率、气流、湿度等)许多实验所看到的放电现象和辉光放电很相似即出现视觉特征上呈现均匀的“雾状”放电,而看不到丝状放电,但这种放电现象是否属于辉光放电目前还没有共识和定论 。
次大气压下辉光放电(HAPGD)产生低温等离子体
由于大气压辉光放电技术目前虽有报道但技术还不成熟,没有见到可用于工业生产的设备。而次大气压辉光放电技术则已经成熟并被应用于工业化的生产中。次大气压辉光放电可以处理各种材料,成本低、处理的时间短、加入各种气体的气氛含量高、功率密度大、处理效率高。可应用于表面聚合、表面接枝、金属渗氮、冶金、表面催化、化学合成及各种粉、粒、片材料的表面改性和纺织品的表面处理。次大气压下辉光放电的视觉特征呈现均匀的雾状放电;放电时电极两端的电压低而功率密度大;处理纺织品和碳纤维等材料时不会出现击穿和燃烧并且处理温度接近室温。次大气压辉光放电技术目前可用于低温材料、生物材料、异型材料的表面亲水处理和表面接枝、表面聚合、金属渗氮、冶金、表面催化、化学合成等工艺。由于是在次大气压条件下的辉光放电,处理环境的气氛浓度高,电子和离子的能量可达10eV以上。材料批处理的效率要高于低气压辉光放电10倍以上。 可处理金属、非金属、(碳)纤维、金属纤维、微粒、粉末等 。
Ⅱ 等离子态是如何形成的
等离子态
物质有三种状态:固态、液态和气态。其实物质还有第四种状态,那就是等离子态。
等离子态又叫做物质的第四态,它是气体,不过其原子失去电子形成自由电子和
正离子,因为两者的量相等因此又叫做等离子态,它可导电而且受磁场影响,热气体中,因为原子高速碰撞而造成电离现象,形成等离子态,太阳内部的气体就是其中一个例子.低温气体,负电子和正离子会再结合,因此不会形成等离子态.在萤光灯内,存在低压汞蒸汽及一些惰性气体,在高电压下,电子急剧加速, 碰撞而造成更多电子及正离子,形成等离子态,过程中汞原子被激发至激发态,由激发态跃至基态,发出电磁波,主要为紫外辐射,紫外辐射投射到管壁的荧光粉时,再转为可见光.
为了克服氢核间的强劲排斥力而进行核熔合作用,两氢核必须高速碰撞,而所需温度高达千万度摄氏,太阳内?依kao)筛胶洗颂跫?但如要发展受“控制的热核熔合”作用,没有容器可忍受此高温而不熔解,利用磁场将等离子体困在磁场内,使它在高温下进行核熔合,这方法仍未成功,仍有待进一步研究.
我们知道,把冰加热到一定程度,它就会变成液态的水,如果继续升高温度,液态的水就会变成气态,如果继续升高温度到几千度以上,气体的原子就会抛掉身上的电子,发生气体的电离化现象,物理学家把电离化的气体就叫做等离子态。
在茫茫无际的宇宙空间里,等离子态是一种普遍存在的状态。宇宙中大部分发光的星球内部温度和压力都很高,这些星球内部的物质差不多都处于等离子态。只有那些昏暗的行星和分散的星际物质里才可以找到固态、液态和气态的物质。
就在我们周围,也经常看到等离子态的物质。在日光灯和霓虹灯的灯管里,在眩目的白炽电弧里,都能找到它的踪迹。另外,在地球周围的电离层里,在美丽的极光、大气中的闪光放电和流星的尾巴里,也能找到奇妙的等离子态。
除了等离子态外,科学家还发现了“超固态”和“中子态”。宇宙中存在一颗白矮星,它的密度很大,大约是水的3600万到几亿倍。一立方厘米白矮星上的物质就有100~200公斤重,这是怎么回事呢?
原来,普通物质内部的原子与原子之间有很大的空隙,但是在白矮星里面,压力和温度都很大,在几百万个大气压的压力下,不但原子之间的空隙被压缩了,就是原子外围的电子层也被压缩了。所有的原子核和原子都紧紧地挤在一起,物质里面不再有什么空隙,因此物质就特别重,这样的物质就是超固态。科学家推测,不但白矮星内部充满了超固态物质,在地球中心一定也存在着超固态物质。
假如在超固态物质上再加上巨大的压力,原子核只好被迫解散,从里面放出质子和中子。放出的质子在极大的压力下会跟电子结合成中子。这样一来,物质的结构就发生了根本性的改变,原来是原子核和电子,现在都变成了中子。这样的状态就叫做“中子态”。
中子态物质的密度大得更是吓人,它比超固态物质还要大10多万倍。一个火柴盒那么大的中子态物质,就有30亿吨重,要用96000台重型火车头才能拉动它。
宏观物质在一定的压力下随温度升高由固态变成液态,再变为气态(有的直接变成气态)。当温度继续升高,气态分子热运动加剧。当温度足够高时,分子中的原子由于获得了足够大的动能,便开始彼此分离。分子受热时分裂成原子状态的过程称为离解。若进一步提高温度,原子的外层电子会摆脱原子核的束缚成为自由电子。失去电子的原子变成带电的离子,这个过程称电离。发生电离(无论是部分电离还是完全电离)的气体称之为等离子体(或等离子态)。等离子体是由带正、负电荷的粒子组成的气体。由于正负电荷总数相等,故等离子体的净电荷等于零。
等离子态与固、液、气三态相比无论在组成上还是在性质上均有本质区别。首先,气体通常是不导电的,等离子体则是一种导电流体。其次,组成粒子间的作用力不同。气体分子间不存在净的电磁力,而等离子中的带电粒子间存在库仑力,并由此导致带电粒子群的种种特有的集体运动。另外,作为一个带电粒子系,等离子体的运动行为明显的受到电磁场的影响和约束。
根据离子温度与电子温度是否达到热平衡,可把等离子体分为平衡等离子体和非平衡等离子体。在平衡等离子体中,各种粒子的温度几乎相等。在非平衡等离子体中电子温度与离子温度相差很大。
通常把电离度小于0.1%的气体称弱电离气体,也称低温等离子体。电离度大于0.1%的称为强电离等离子体,也称高温等离子体。
等离子体在工业上的应用具有十分广阔的前景。高温等离子体的重要应用是受控核聚变。低温等离子体用于切割、焊接和喷涂以及制造各种新型的电光源与显示器等。
等离子体在自然界中是普遍存在的。例如,太阳、恒星、银河系、河外星系中的大部分星际物质都处于等离子体状态。地球上南北极有时发生的五颜六色的极光、夏日雷雨时出现的闪电和绚丽多彩的霓虹灯、日光灯等都与等离子体现象密切有关。
Ⅲ 等离子熔炼的基本原理
等离子熔炼主要是基于等离子体的超高温和根据不同的需要可有效地控制炉内气氛以实现特殊金属或合金的熔炼。有时还可以利用水冷结晶器使金属或合金实现顺序凝固以获得高质量结晶组织的锭子。
等离子体电弧的获得 等离子体是固态、液态和气态之外物质的第4态,是分布于中性粒子气体中的电子与离子的混合物。而且正电荷与负电荷的浓度相等。它具有高的导电性、热容量和导热性。等离子体还受电场和磁场的作用。应用于冶金的是低温等离子体,温度通常为5000~2000K。等离子体电弧是用直流电或交流电在两个或更多个电极间放电,有时也用高频电场放电获得的。放电时气体电离的实质是发生电子雪崩,这种雪崩具有连锁反应特性,因而电离速度极快。等离子体电弧是比自由电弧电离度更高的压缩电弧。当电极间气体放电形成的电弧受到外界气流、器壁或外磁场的压缩,使弧柱变细,温度更高,能量高度集中时便形成压缩电弧。
产生上述等离子电弧的装置叫做等离子发生器或称等离子枪。可分为转移型和非转移型两类。前者阴极装在等离子枪内而阳极是被加热的物体即被熔炼的金属;后者两根电极都装在枪内,通入的气体在枪内被电离,在两极间产生电弧,并从枪端喷出高温等离子火焰。另外,等离子枪所用的电源有直流、交流和交直流混合型。等离子熔炼设备中使用的主要是直流转移弧型等离子电弧。
Ⅳ 什么是等离子体
等离子体(plasma)又叫做电浆,是由部分电子被剥夺后的原子及原子团被电离后产生的正负离子组成的离子化气体状物质,尺度大于德拜长度的宏观电中性电离气体,其运动主要受电磁力支配,并表现出显着的集体行为。
它广泛存在于宇宙中,常被视为是除去固、液、气外,物质存在的第四态。等离子体是一种很好的导电体,利用经过巧妙设计的磁场可以捕捉、移动和加速等离子体。等离子体物理的发展为材料、能源、信息、环境空间、空间物理、地球物理等科学的进一步发展提供了新的技术和工艺。
(4)怎样快速获得等离子体扩展阅读:
等离子体主要用于以下3方面。
1、等离子体冶炼:用于冶炼用普通方法难于冶炼的材料,例如高熔点的锆 (Zr)、钛(Ti)、钽(Ta)、铌(Nb)、钒(V)、钨(W)等金属;还用于简化工艺过程,例如直接从ZrCl4、MoS2、Ta2O5和TiCl4中分别获得Zr、Mo、Ta和Ti。
用等离子体熔化快速固化法可开发硬的高熔点粉末,如碳化钨-钴、Mo-Co、Mo-Ti-Zr-C等粉末。 等离子体冶炼的优点是产品成分及微结构的一致性好,可免除容器材料的污染。
2、等离子体喷涂:许多设备的部件应能耐磨、耐腐蚀、抗高温,为此需要在其表面喷涂一层具有特殊性能的材料。用等离子体沉积快速固化法可将特种材料粉末喷入热等离子体中熔化,并喷涂到基体(部件)上,使之迅速冷却、固化,形成接近网状结构的表层,这可大大提高喷涂质量。
3、等离子体焊接:可用以焊接钢、合金钢;铝、铜、钛等及其合金。特点是焊缝平整,可以再加工,没有氧化物杂质,焊接速度快。用于切割钢、铝及其合金,切割厚度大。
Ⅳ 等离子体如何制取、保存
高压电离气体可以实现等离子体的制备 但是这种方法获得的等离子体必须需要外加功率源 也就是需要有一定重复频率的电源
Ⅵ 如何简易制造等离子体
点把火就行了,火中也有等离子体
Ⅶ 等离子体
★【等离子体】是由部分电子被剥夺后的原子及原子被电离后产生的正负电子组成的离子化气体状物质,它是除去固、液、气外,物质存在的第四态。等离子体是一种很好的导电体,利用经过巧妙设计的磁场可以捕捉、移动和加速等离子体。等离子体物理的发展为材料、能源、信息、环境空间,空间物理,地球物理等科学的进一步发展提新的技术和工艺。
★看似“神秘”的等离子体,其实是宇宙中一种常见的物质,在太阳、恒星、闪电中都存在等离子体,它占了整个宇宙的99%。现在人们已经掌握利用电场和磁场产生来控制等离子体。例如焊工们用高温等离子体焊接金属。
★等离子体可分为两种:高温和低温等离子体。现在低温等离子体广泛运用于多种生产领域。例如:等离子电视,婴儿尿布表面防水涂层,增加啤酒瓶阻隔性。更重要的是在电脑芯片中的蚀刻运用,让网络时代成为现实。
★高温等离子体只有在温度足够高时发生的。太阳和恒星不断地发出这种等离子体,组成了宇宙的99%。低温等离子体是在 常温下发生的等离子体(虽然电子的温度很高)。低温等离子体体可以被用于氧化、变性等表面处理或者在有机物和无机物上进行沉淀涂层处理。
★等离子体是物质的第四态,即电离了的“气体”,它呈现出高度激发的不稳定态,其中包括离子(具有不同符号和电荷)、电子、原子和分子。其实,人们对等离子体现象并不生疏。在自然界里,炽热烁烁的火焰、光辉夺目的闪电、以及绚烂壮丽的极光等都是等离子体作用的结果。对于整个宇宙来讲,几乎99.9%以上的物质都是以等离子体态存在的,如恒星和行星际空间等都是由等离子体组成的。用人工方法,如核聚变、核裂变、辉光放电及各种放电都可产生等离子体。 分子或原子的内部结构主要由电子和原子核组成。在通常情况下,即上述物质前三种形态,电子与核之间的关系比较固定,即电子以不同的能级存在于核场的周围,其势能或动能不大。
由离子、电子以及未电离的中性粒子的集合组成,整体呈中性的物质状态.
普通气体温度升高时,气体粒子的热运动加剧,使粒子之间发生强烈碰撞,大量原子或分子中的电子被撞掉,当温度高达百万开到1亿开,所有气体原子全部电离.电离出的自由电子总的负电量与正离子总的正电量相等.这种高度电离的、宏观上呈中性的气体叫等离子体.
等离子体和普通气体性质不同,普通气体由分子构成,分子之间相互作用力是短程力,仅当分子碰撞时,分子之间的相互作用力才有明显效果,理论上用分子运动论描述.在等离子体中,带电粒子之间的库仑力是长程力,库仑力的作用效果远远超过带电粒子可能发生的局部短程碰撞效果,等离子体中的带电粒子运动时,能引起正电荷或负电荷局部集中,产生电场;电荷定向运动引起电流,产生磁场.电场和磁场要影响其他带电粒子的运动,并伴随着极强的热辐射和热传导;等离子体能被磁场约束作回旋运动等.等离子体的这些特性使它区别于普通气体被称为物质的第四态.
在宇宙中,等离子体是物质最主要的正常状态.宇宙研究、宇宙开发、以及卫星、宇航、能源等新技术将随着等离子体的研究而进入新时代.
主要应用
等离子体主要用于以下3方面。①等离子体冶炼:用于冶炼用普通方法难于冶炼的材料,例如高熔点的锆 (Zr)、钛(Ti)、钽(Ta)、铌(Nb)、钒(V)、钨(W)等金属;还用于简化工艺过程,例如直接从ZrCl、MoS、TaO和TiCl中分别获得Zr、Mo、Ta和Ti;用等离子体熔化快速固化法可开发硬的高熔点粉末,如碳化钨-钴、Mo-Co、Mo-Ti-Zr-C等粉末 等离子体冶炼的优点是产品成分及微结构的一致性好,可免除容器材料的污染②等离子体喷涂:许多设备的部件应能耐磨耐腐蚀、抗高温,为此需要在其表面喷涂一层具有特殊性能的材料。用等离子体沉积快速固化法可将特种材料粉末喷入热等离子体中熔化,并喷涂到基体(部件)上,使之迅速冷却、固化,形成接近网状结构的表层,这可大大提高喷涂质量。③等离子体焊接:可用以焊接钢、合金钢;铝、铜、钛等及其合金。特点是焊缝平整,可以再加工,没有氧化物杂质,焊接速度快。用于切割钢、铝及其合金,切割厚度大。
等离子技术
所谓等离子体,就电气技术而言,它指的是一种拥有离子、电子和核心粒子的不带电的离子化物质。等离子体包括有,几乎相同数量的自由电子和阳极电子。在一个等离子中,其中的粒子已从核心粒子中分离了出来。因此,当一个等离子包括大量的离子和电子,从而是电的最佳导体,而且它会受到磁场的影响,当温度高时,电子便会从核心粒子中分离出来了。
近几年来等离子平面屏幕技术支持下的PDP 真可谓是如日中天,它是未来真正平面电视的最佳候选者。其实等离子显示技术并非近年才有的新技术,早在1964年美国伊利诺斯大学就成功研制出了等离子显示平板,但那时等离子显示器为单色。现在等离子平面屏幕技术为最新技术,而且它是高质图象和大纯平屏幕的最佳选择。大纯平屏幕可以在任何环境下看电视,等离子面板拥有一系列象素,同时这些象素又包含有三种次级象素,它们分别呈红、绿色、蓝色。在等离子状态下的气体能与每个次象素里的磷光体反应,从而能产生红、绿或蓝色。这种磷光体与用在阴极射线管(CRT)装置(如电视机和普通电脑显示器) 中的磷光体是一样的,你可以由此而得到你所期望的丰富有动态的颜色,每种由一个先进的电子元件控制的次象素能产生16亿种不同的颜色,所有的这些意味着你能在约不到6英寸厚的显示屏上更容易看到最佳画面。
Ⅷ 何谓等离子体目前比较有用的等离子体反应有几种简述其用途
通俗的说,等离子体就是电离的气体。等离子体的概念最早由美国着名的科学家Langmuir在1920年提出。比较严格的定义是:等离子体是由电子、阳离子和中性粒子组成的整体上呈电中性的物质集合。
低温等离子体
等离子体中的存在着电子、阳离子和中性粒子,由于电子质量小,热运动比较剧烈,在不平衡的状态下,其热运动可以比阳离子和中性粒子剧烈很多,体现为电子温度远高于阳离子和中性粒子的温度。在低温等离子体中,电子温度通常为几个eV(1eV约等于12000K),而离子和中性粒子的温度(即通常所说的气体温度)依然在室温附近。低温等离子体是一种非平衡态,要获得低温等离子体就要减少碰撞,因此常常在较低的压力下获得;在较高的压力下,需要比较大的气体流速。
等离子体在现代技术中有非常重要的作用。根据等离子体的不同特点,其应用基本可以分为以下一些方面:
利用等离子体的发光。多彩的发光是等离子体的重要标志,因此等离子体是一种理想的光源。跟白炽灯不一样,等离子体光源通常是冷光源,发光效率高。另一基于等离子体的发光现象的重要应用是等离子平板显示,大面积的等离子体电视已经商用,并且是颇具潜力的一种显示技术。等离子体的发光光谱跟产生等离子的元素和等离子体的状态密切相关,对等离子体光谱的分析是研究等离子体的一种重要手段
利用等离子体的高温。等离子体方法能获得普通加热方法难以达到的高温,原子核聚变过程中,物质都处于等离子体状态,等离子体的高温还可用于焊接、切割、金属熔炼等方面
Ⅸ 等离子体的主要应用
当光打在金属表面时,二维光或是等离子体就会被激发。等离子体可以被看作是光子和电子的连接。
可以建立一个混合原则,由光转变成的等离子体在金属表面传播时(该等离子体的波长比原始光波的波长小的多);等离子体能被二维光学仪器(镜子、波导、透镜等)处理,等离子体能再次转变成光或者电信号。
等离子体传感器和癌症治疗仪:NaomiHalas描述了等离子体怎样激发小金属层表面的,米粒形状的粒子能量很大,做光谱学试验的光是微分子数量级。在米粒状粒子弯曲顶端处等离子体电场比用来激发等离子体的电场强很多,并且它在很大程度上改进了光谱的速率和精确性。换一种说法,纳米数量级的等离子体不仅可以用来鉴定,还可以用来杀死癌细胞。
等离子体显微镜:IgorSmolyaninov报道称他和他的同事能够拍下来空间分辨率在60nm的物体(如果是实用材料,分辨率能达到30nm),而用激光激发只能达到515nm。换句话说,用这种分辨率制造的显微镜会比平常使用的衍射方法好的多;而且,这更是远场显微镜――光源不用放在少于光波长的范围内。巨大光极化和光传输:GennadyShvets报道当表面的声子被光激发来制造超棱镜(用平板材料透镜化)显微镜是红外线光显微镜波长的二十分之一。他和他的同事能拍下样品表面下的特征,他们称为“巨大的光传输”,照射到表面的光比一般光的波长小的多。
光频率的未来等离子体电路:NaderEngheta支持等离子体激发的纳米粒子能够被设计成纳米数量级的电容,电阻,和感应器(电路中的各种元素)。
电路能够接收广播(1010Hz)或者是微波(1012Hz)的频率,而该电路却能达到光频率(1015Hz)。这就能实现小型化以及用纳米天线探测光信号的过程,纳米波导,纳米传感器,并且还有可能实现纳米计算机,纳米存储,纳米信号和光分子接口。
等离子体主要用于以下3方面。
①等离子体冶炼:用于冶炼用普通方法难于冶炼的材料,例如高熔点的锆(Zr)、钛(Ti)、钽(Ta)、铌(Nb)、钒(V)、钨(W)等金属;还用于简化工艺过程,例如直接从ZrCl、MoS、TaO和TiCl中分别获得Zr、Mo、Ta和Ti;用等离子体熔化快速固化法可开发硬的高熔点粉末,如碳化钨-钴、Mo-Co、Mo-Ti-Zr-C等粉末等离子体冶炼的优点是产品成分及微结构的一致性好,可免除容器材料的污染。
②等离子体喷涂:许多设备的部件应能耐磨耐腐蚀、抗高温,为此需要在其表面喷涂一层具有特殊性能的材料。用等离子体沉积快速固化法可将特种材料粉末喷入热等离子体中熔化,并喷涂到基体(部件)上,使之迅速冷却、固化,形成接近网状结构的表层,这可大大提高喷涂质量。
③等离子体焊接:可用以焊接钢、合金钢;铝、铜、钛等及其合金。特点是焊缝平整,可以再加工没有氧化物杂质,焊接速度快。用于切割钢、铝及其合金,切割厚度大。