当前位置:首页 » 图片效果 » pcb设计怎样好看
扩展阅读
怎样做串钩视频 2025-07-18 05:16:29

pcb设计怎样好看

发布时间: 2022-06-19 13:25:14

㈠ 如何绘制PCB板图

绘制PCB板图可以使用Altium Designer程序。具体步骤如下:

1、首先我们需要先画出自己的原理图,并按此图来绘制pcb板图。

㈡ 怎样才能画好PCB

首先得有电路设计基础知识。各种电子元器件的参数。然后学一种工具比如protel99se,或者cadence的OrCAD或者Allegro 后两种比较复杂,初学者还是学用Protel吧,做一般的PCB都够用。
如果你做的是高频电路还要懂电磁兼容,这要求你懂基本的电磁场理论,否则你的电磁兼容水平达不到多高,一些基本的经验你也不会理解。当然做低频PCB就没那么高电磁兼容要求了。

华为PCB设计规范 http://wenku..com/view/0e04e56527d3240c8447ef74.html这个

这个是专业人士必看的,对初学者也很有帮助

加强理论知识、多学习其他人的优秀设计,多实践
自然就会有很大的提高

㈢ PCB板设计

用protel设计四层板的实例过程及内电层分割

--------------------------------------------------------------------------------
本教程将详细的讲解Protel 99SE的四层板的设计过程,以及在其中的内电层分割的用法。
事先声明:本教程用于初学者的入门与提高;对于高手们,也欢迎看看,帮小弟指出其中不当的做法!
下面,就打开你的电脑及软件开始了。(- - - - - -好像是废话, 嘿嘿..... )
一、准备工作
新建一个DDB文件,再新建相关的原理图文件, 并做好相关准备设计PCB的准备工作,这个相信想画四层板的朋友都会, 不用我多讲了。

二、新建文件
新建一个PCB文件, 在KeepOutLayer层画出PCB的外框, 如下图,用过Protel的朋友们应该都会。

三、设置板层
在PCB界面中点击主菜单Design 再点击Layer Stack Manager 如图:

点击后弹出下面的层管理器对话框, 因为在Protel中默认是双面板,所以,我们看到的布线层只有两层。

现在我们来添加层,先单击左边的TopLayer, 再单击层管理器右上角的Add Plane按钮,添加内电层,这里说明一下,因为现在讲的是用负片画法的四层板,所以,需要添加内电层,而不是Add Layer。
单击 后,将在TopLayer的下自动增加一个 层,双击该层,我们就可以编辑这一层的相关属性,如下图:

在Name对应的项中,填入VCC,点击确定关闭对话框,也就是将该层改名为VCC,作为设计时的电源层。
按同样的方法,再添加一个GND层。完成后如图:

四、导入网络
回到原理图的界面,单击主菜单Design ==> Update PCB如图:

=>
选择要更新的PCB文件,点击Apply ,

再点击左边的 ,查看我们在原理图中所做的设计是否正确。

这里,我们把 项打上勾,只查看错误的网络。

在这里,我们没有发现有任何错误网络时,可以单击 将网络导入PCB文件了。
这种导入网络的方法是Protel的原理图导入网络到PCB的一个很方便的方法,不用再去生成网络表了。同时,修改原理图后的文件,也可用此方法快速更新PCB文件。

五、布局
由于这个基本大家都会,所以省略了,完成后如图

:

六、设置内电层
我们再执行主菜单Design 下的Layer Stack Manager 弹出层管理器,

双击VCC层,在弹出的对话框中,在Net name 的下拉对话框中选择VCC网络,给这一层真正定义为VCC网络,之前的只是取个VCC的名称而已,与VCC网络相同的元件管脚及过孔,均会与该层自动连接,从而不用布线。
用同样的方法给GND层定义网络,将其定义为GND网络。点击OK关闭对话框。这时,我们发现,在PCB中,有些元件的PAD的中心有一个十字,这是因为,这个焊盘的网络是VCC或者GND,说明已经与相对应的网络连通。如图:

在图中,焊盘上的十字架的颜色就代表相对应连接内电层的颜色。如:内电层GND为棕色,则焊盘的十字也为棕色。

七、布线
[800字…………省略]
八、内电层分割
当Top Layer与BottomLayer层没有足够的空间来布信号线时,而又不想增加更多的信号层, 我们就需要将这些信号线走在内电层上,做法如下:
先确定要走在内电层的网络,再单击主菜单Place, 选择 项。如图:

弹出分割内电层的对话框,如图:

在Connect to Net中选择一个要布在内电层的网络,这里,假如,我们选AA1网络,在 中,我们设置为0.5mm, 这就是在内电层中与其它网络的距离。这个尽量设大一点,至少在0.3mm以上,一般为0.5mm,因为,在内层中,间距太小会导致生产时不良率较高。在Layer中,我们选VCC, ( 建议不要在层做内层分割,因为,在设计时,尽量保持的完整性,提高抗干扰能力。)
设置好后点OK,再在PCB中找到AA1网络的PAD处画线,将要布在该层的PAD或VIA包围起来,形成一个闭合的多边形。(注意,这个线在内层中,是无铜区域,也就是在顶层的线与线中的间隙,所以,不能画到与焊盘重叠)如图:

这时,网络为AA1的PAD中心也多了个十字架,说明,AA1网络已经从VCC层将这里焊盘连接起来了,注:千万注意,在内电层中不要再对这些焊盘进行走线了。

九、看内电层
在PCB内层设置完毕后,我们要来查看内层是否正确,当然,最先是用眼睛来查看整个板了。下面,我们来看看下面这个图:

㈣ PCB设计有哪些特别需要注意的点

PCB设计的基本原则
PCB设计的好坏对电路板的性能有很大的影响,因此在进行PCB设计的时候,必须遵循PCB设计的一般原则。
首先,要考虑PCB的尺寸大小,PCB尺寸过大时,印制线路长,阻抗增加,抗噪能力下降,成本增加;PCB尺寸过小时,则散热不好,且临近线容易受干扰。在确定PCB尺寸后,再确定特殊元件的位置。最后根据电路的功能单元,对电路的全部元件进行布局。
设计流程:
在绘制完电路原理图之后,还要进行PCB设计的准备工作:生成网络报表。
规划PCB板:首先,我们要对设计方案有一个初步的规划,如电路板是什么形状,它的尺寸是多大,使用单面板还是双面板或者是多层板。这一步的工作非常重要,是确定电路板设计的框架。
设置相关参数:主要是设置元件的布置参数、板层参数和布线参数等。
导入网络报表及元件封装:网络报表相当重要,是原理图设计系统和PCB设计系统之间的桥梁。自动布线操作就是建立在网表的基础上的。元件的封装就是元件在PCB板上的大小以及各个引脚所对应的焊盘位置。每个元件都要有一个对应的封装。
元件布局:元件的布局可以使用Protel 软件自动进行,也可以进行手动布局。元器件布局是PCB板设计的重要步骤之一,使用计算机软件的自动布局功能常常有很多不合理的地方,还需要手动调整,良好的元件布局对后面的布线提供方便,而且可以提高整板的可靠性。
布线:根据元件引脚之间的电气联系,对PCB板进行布线操作。布线有自动布线和手动布线两种方式。自动布线是根据自动布线参数设置,用软件在PCB板的一部分或者全部范围内进行布线,手动布线是用户在PCB板上根据电气连接进行手工布线。自动布线的结果并不是最优的,存在很多缺陷和不合理的地方,而且并不能保证每次都能百分之百完成自动布线任务。而手动布线的工作量过于繁重,一个大的PCB板往往要耗费巨大的工作量,因此需要灵活运用手工和自动相结合的方式进行布线。
完成布线操作后,需要对PCB 板进行补泪滴、打安装孔和覆铜等操作,以完成PCB 板的后续工作。
最后在通过设计规则检查之后,就可以保存并输出PCB文件了。
3.2注意事项
3.2.1布局
在确定特殊元件的位置时要遵循以下原则:
1.尽可能缩短高频元件的连线,设法减少它们的分布参数和相互间的电磁干扰。易受干扰的元件不能靠得太近,输入和输出元件应相互远离。
2.某些元件或导线之间可能有较高的电位差,应加大它们之间的距离,以免放电引起意外短路。带强电的元件应尽量布置在调试时手不宜触及的地方。
3.质量超过15g的元件,应当用支架固定,然后焊接。那些又大又重、发热量又多的元件,不宜装在PCB上,而应安装在整机的机箱上,且考虑散热问题。热敏元件应远离发热元件。
4.对于电位器、可调电感线圈、可变电容器、微动开关等可调元件的布局应考虑整机的结构要求。
5.应留出印制板的定位孔和固定支架所占用的位置。
根据电路的功能单元对电路的全部元件进行布局时,要符合以下原则:
1.按照电路的流程安排各个功能电路单元的位置,使布局便于信号流畅,并使信号尽可能保持一致的方向。
2.以每个功能电路的核心元件为中心,围绕它来布局。元件应均匀、整齐、紧凑地排列在PCB上,尽量减少和缩短各元件之间的引线和连接。
3.在高频下工作的电路,要考虑元件之间的分布参数。一般电路应尽可能使元件平行排列。这样不但美观,而且焊接容易,易于批量生产。
4.位于电路板边缘的元件,离电路板边缘一般小于2mm。电路板的最佳形状为矩形,长宽比为3:2(或4:3)。电路板面尺寸过大时,应考虑板所受到的机械强度。
3.2.2布线
1.连线精简原则
连线要精简,尽可能短,尽量少拐弯,力求线条简单明了,特别是在高频回路中,当然为了达到阻抗匹配而需要进行特殊延长的线就例外了,如蛇形走线等等。
2.安全载流原则
铜线宽度应以自己能承受的电流为基础进行设计,铜线的载流能力取决于以下因素:线宽、线厚(铜箔厚度)、容许温升等。
电磁抗干扰原则
电磁抗干扰设计的原则比较多,例如铜膜线的应为圆角或斜角(因为高频时直角或者尖角的拐弯会影响电气性能),双面板两面的导线应相互斜交或者弯曲走线,尽量避免平行走线,
减少寄生耦合等。
4.安全工作原则
要保证安全工作,例如保证两线最小安全间距要能承受所加电压峰值;高压线应圆滑,不得有尖锐的倒角,否则容易造成板路击穿等。以上是一些基本的布线原则,布线很大程度上和设计者的设计经验有关。
3.2.3 焊盘大小
焊盘的直径和内孔尺寸:焊盘的内孔尺寸必须从元件引线直径、公差尺寸以及焊锡层厚度、孔径公差、孔金属电镀层等方面考虑。焊盘的内孔一般不小于0.6mm,因为太小的孔开模冲孔时不易加工。通常情况下以金属引脚加上0.2mm作为焊盘内孔直径,焊盘的直径取决
于内孔直径。
有关焊盘的其他注意事项:
焊盘内孔边缘到印制板边的距离要大于1mm,这样可以避免加工时导致焊盘缺损。焊盘的补泪滴:当与焊盘的连接走线较细时,要将焊盘与走线之间的连接设计成泪滴状,这样的好处是焊盘不容易起皮,增加了连接处的机械强度,使走线与焊盘不易断开。相邻的焊盘要避免成锐角或大面积的铜箔,成锐角会造成波峰焊困难,大面积铜箔会因散热过快导致不易焊接。
3.2.4 PCB的抗干扰措施
PCB的抗干扰设计与具体电路有着密切的关系,这里介绍一下PCB抗干扰设计的常用措施。
1 电源线设计。根据PCB 板电流的大小,尽量加粗电源线宽度,减少环路电阻。同时,使电源线、地线的走向和数据传递的方向不一致,这样有助于增强抗噪声能力。
2地线设计原则:
数字地与模拟地分开。若PCB板上既有逻辑电路又有模拟电路,应使它们尽量分开。低频电路的地应尽量采用单点并联接地,实际布线有困难时可部分串联后再并联接地。高频电路宜采用多点串联接地,地线应短而粗,高频元件周围尽量用栅格状的大面积铜箔。接地线应尽量加粗。若接地线用很细的线条,则接地电位随电流的变化而变化,使抗噪能力降低。因此应将接地线加粗,使它能通过三倍于PCB上的允许电流。如有可能,接地线宽度应在2~3mm以上。
接地线构成闭环路。有数字电路组成的印刷板,其接地电路构成闭环能提高抗噪声能力。
3大面积覆铜
所谓覆铜,就是将PCB上没有布线的地方,铺满铜膜。PCB上的大面积覆铜有两种作用:一为散热;另外还可以减小地线阻抗,并且屏蔽电路板的信号交叉干扰以提高电路系统的抗干扰能力。
3.2.5去耦电容配置
在 PCB 板上每增加一条导线,增加一个元件,或者增加一个通孔,都会给整个PCB 板引入额外的寄生电容,因此在对PCB板进行设计的时候,应该在电路板的关键部位安装适当的去耦电容。
安装去耦电容的一般原则是:
1.在电源的输入端配置一个10~100μF的电解电容器。
2.每一个集成电路芯片都应配置一个0.01pF 的电容,也可以几个集成电路芯片合起来配置一个10pF的电容。
3.对于抗噪能力弱的元件,如RAM、ROM等,应在芯片的电源线与地线之间直接接入去耦电容。
4.配置的电容尽量靠近被配置的元件,减少引线长度。
5.在有容易产生电火花放电的地方,如继电器,空气开关等地方,应该配置RC电路,以便吸收电流防止电火花发生。
3.3 设计规则检查
对布线完毕的电路板必须要进行DRC(Design Rule Check)检验,通过DRC检查可以查找出电路板上违反预先设定规则的行为,以便于修改不合理的设计。一般检查有一下几个方面:
1.检查铜膜导线、焊盘、通孔等之间的距离是否大于允许的最小值。
2.不同的导线之间是否有短路现象发生。
3.是否有些连线没有连接好,或者导线中间有中断现象发生,或者PCB 板上存在未清除干净的废线。
4.各个导线的宽度是否满足要求,尤其是电源线和地线,能加宽的地方一定要加宽,以减小阻抗。
5.导线拐角的地方不能形成锐角或者直角,对不理想的地方进行修改。
6.所有通孔、焊盘的大小是否满足设计要求。

㈤ pcb设计的技巧

在高速设计中,可控阻抗板和线路的特性阻抗是最重要和最普遍的问题之一。首先了解一下传输线的定义:传输线由两个具有一定长度的导体组成,一个导体用来发送信号,另一个用来接收信号(切记“回路”取代“地”的概念)。在一个多层板中,每一条线路都是传输线的组成部分,邻近的参考平面可作为第二条线路或回路。一条线路成为“性能良好”传输线的关键是使它的特性阻抗在整个线路中保持恒定。

线路板成为“可控阻抗板”的关键是使所有线路的特性阻抗满足一个规定值,通常在25欧姆和70欧姆之间。在多层线路板中,传输线性能良好的关键是使它的特性阻抗在整条线路中保持恒定。

但是,究竟什么是特性阻抗?理解特性阻抗最简单的方法是看信号在传输中碰到了什么。当沿着一条具有同样横截面传输线移动时,这类似图1所示的微波传输。假定把1伏特的电压阶梯波加到这条传输线中,如把1伏特的电池连接到传输线的前端(它位于发送线路和回路之间),一旦连接,这个电压波信号沿着该线以光速传播,它的速度通常约为6英寸/纳秒。当然,这个信号确实是发送线路和回路之间的电压差,它可以从发送线路的任何一点和回路的相临点来衡量。图2是该电压信号的传输示意图。

Zen的方法是先“产生信号”,然后沿着这条传输线以6英寸/纳秒的速度传播。第一个0.01纳秒前进了0.06英寸,这时发送线路有多余的正电荷,而回路有多余的负电荷,正是这两种电荷差维持着这两个导体之间的1伏电压差,而这两个导体又组成了一个电容器。

在下一个0.01纳秒中,又要将一段0.06英寸传输线的电压从0调整到1伏特,这必须加一些正电荷到发送线路,而加一些负电荷到接收线路。每移动0.06英寸,必须把更多的正电荷加到发送线路,而把更多的负电荷加到回路。每隔0.01纳秒,必须对传输线路的另外一段进行充电,然后信号开始沿着这一段传播。电荷来自传输线前端的电池,当沿着这条线移动时,就给传输线的连续部分充电,因而在发送线路和回路之间形成了1伏特的电压差。每前进0.01纳秒,就从电池中获得一些电荷(±Q),恒定的时间间隔(±t)内从电池中流出的恒定电量(±Q)就是一种恒定电流。流入回路的负电流实际上与流出的正电流相等,而且正好在信号波的前端,交流电流通过上、下线路组成的电容,结束整个循环过程。

㈥ Altium PCB怎么才能更好地布局

首先说这是经验积累的问题,其次就是需要个人电路知识经验了!

布局说白了就是在板子上放器件。这时如果前面讲到的准备工作都做好的话,就可以在原理图上生成网络表(Design-> Create Netlist),之后在PCB图上导入网络表(Design->Load Nets)。就看见器件哗啦啦的全堆上去了,各管脚之间还有飞线提示连接。然后就可以对器件布局了。一般布局按如下原则进行:
①. 按电气性能合理分区,一般分为:数字电路区(即怕干扰、又产生干扰)、模拟电路区(怕干扰)、功率驱动区(干扰源);
②. 完成同一功能的电路,应尽量靠近放置,并调整各元器件以保证连线最为简洁;同时,调整各功能块间的相对位置使功能块间的连线最简洁;
③. 对于质量大的元器件应考虑安装位置和安装强度;发热元件应与温度敏感元件分开放置,必要时还应考虑热对流措施;
④. I/O驱动器件尽量靠近印刷板的边、靠近引出接插件;
⑤. 时钟产生器(如:晶振或钟振)要尽量靠近用到该时钟的器件;
⑥. 在每个集成电路的电源输入脚和地之间,需加一个去耦电容(一般采用高频性能好的独石电容);电路板空间较密时,也可在几个集成电路周围加一个钽电容。
⑦. 继电器线圈处要加放电二极管(1N4148即可);
⑧. 布局要求要均衡,疏密有序,不能头重脚轻或一头沉
——需要特别注意,在放置元器件时,一定要考虑元器件的实际尺寸大小(所占面积和高度)、元器件之间的相对位置,以保证电路板的电气性能和生产安装的可行性和便利性同时,应该在保证上面原则能够体现的前提下,适当修改器件的摆放,使之整齐美观,如同样的器件要摆放整齐、方向一致,不能摆得“错落有致” 。
这个步骤关系到板子整体形象和下一步布线的难易程度,所以一点要花大力气去考虑。布局时,对不太肯定的地方可以先作初步布线,充分考虑。

第四:布线。布线是整个PCB设计中最重要的工序。这将直接影响着PCB板的性能好坏。在PCB的设计过程中,布线一般有这么三种境界的划分:首先是布通,这时PCB设计时的最基本的要求。如果线路都没布通,搞得到处是飞线,那将是一块不合格的板子,可以说还没入门。其次是电器性能的满足。这是衡量一块印刷电路板是否合格的标准。这是在布通之后,认真调整布线,使其能达到最佳的电器性能。接着是美观。假如你的布线布通了,也没有什么影响电器性能的地方,但是一眼看过去杂乱无章的,加上五彩缤纷、花花绿绿的,那就算你的电器性能怎么好,在别人眼里还是垃圾一块。这样给测试和维修带来极大的不便。布线要整齐划一,不能纵横交错毫无章法。这些都要在保证电器性能和满足其他个别要求的情况下实现,否则就是舍本逐末了。布线时主要按以下原则进行:
①.一般情况下,首先应对电源线和地线进行布线,以保证电路板的电气性能。在条件允许的范围内,尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,通常信号线宽为:0.2~0.3mm,最细宽度可达0.05~0.07mm,电源线一般为1.2~2.5mm。对数字电路的 PCB可用宽的地导线组成一个回路, 即构成一个地网来使用(模拟电路的地则不能这样使用)
②. 预先对要求比较严格的线(如高频线)进行布线,输入端与输出端的边线应避免相邻平行,以免产生反射干扰。必要时应加地线隔离,两相邻层的布线要互相垂直,平行容易产生寄生耦合。
③. 振荡器外壳接地,时钟线要尽量短,且不能引得到处都是。时钟振荡电路下面、特殊高速逻辑电路部分要加大地的面积,而不应该走其它信号线,以使周围电场趋近于零;
④. 尽可能采用45º的折线布线,不可使用90º折线,以减小高频信号的辐射;(要求高的线还要用双弧线)
⑤. 任何信号线都不要形成环路,如不可避免,环路应尽量小;信号线的过孔要尽量少;
⑥. 关键的线尽量短而粗,并在两边加上保护地。
⑦. 通过扁平电缆传送敏感信号和噪声场带信号时,要用“地线-信号-地线”的方式引出。
⑧. 关键信号应预留测试点,以方便生产和维修检测用
⑨.原理图布线完成后,应对布线进行优化;同时,经初步网络检查和DRC检查无误后,对未布线区域进行地线填充,用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。或是做成多层板,电源,地线各占用一层。
——PCB布线工艺要求
①. 线
一般情况下,信号线宽为0.3mm(12mil),电源线宽为0.77mm(30mil)或1.27mm(50mil);线与线之间和线与焊盘之间的距离大于等于0.33mm(13mil),实际应用中,条件允许时应考虑加大距离;
布线密度较高时,可考虑(但不建议)采用IC脚间走两根线,线的宽度为0.254mm(10mil),线间距不小于0.254mm(10mil)。特殊情况下,当器件管脚较密,宽度较窄时,可按适当减小线宽和线间距。

②. 焊盘(PAD)
焊盘(PAD)与过渡孔(VIA)的基本要求是:盘的直径比孔的直径要大于0.6mm;例如,通用插脚式电阻、电容和集成电路等,采用盘/孔尺寸 1.6mm/0.8mm(63mil/32mil),插座、插针和二极管1N4007等,采用1.8mm/1.0mm(71mil/39mil)。实际应用中,应根据实际元件的尺寸来定,有条件时,可适当加大焊盘尺寸;
PCB板上设计的元件安装孔径应比元件管脚的实际尺寸大0.2~0.4mm左右。

③. 过孔(VIA)
一般为1.27mm/0.7mm(50mil/28mil);
当布线密度较高时,过孔尺寸可适当减小,但不宜过小,可考虑采用1.0mm/0.6mm(40mil/24mil)。

④. 焊盘、线、过孔的间距要求
PAD and VIA: ≥ 0.3mm(12mil)
PAD and PAD: ≥ 0.3mm(12mil)
PAD and TRACK: ≥ 0.3mm(12mil)
TRACK and TRACK: ≥ 0.3mm(12mil)
密度较高时:
PAD and VIA: ≥ 0.254mm(10mil)
PAD and PAD: ≥ 0.254mm(10mil)
PAD and TRACK: ≥0.254mm(10mil)
TRACK and TRACK: ≥0.254mm(10mil)

第五:布线优化和丝印。“没有最好的,只有更好的”!不管你怎么挖空心思的去设计,等你画完之后,再去看一看,还是会觉得很多地方可以修改的。一般设计的经验是:优化布线的时间是初次布线的时间的两倍。感觉没什么地方需要修改之后,就可以铺铜了(Place->polygon Plane)。铺铜一般铺地线(注意模拟地和数字地的分离),多层板时还可能需要铺电源。时对于丝印,要注意不能被器件挡住或被过孔和焊盘去掉。同时,设计时正视元件面,底层的字应做镜像处理,以免混淆层面。

第六:网络和DRC检查和结构检查。首先,在确定电路原理图设计无误的前提下,将所生成的PCB网络文件与原理图网络文件进行物理连接关系的网络检查(NETCHECK),并根据输出文件结果及时对设计进行修正,以保证布线连接关系的正确性;
网络检查正确通过后,对PCB设计进行DRC检查,并根据输出文件结果及时对设计进行修正,以保证PCB布线的电气性能。最后需进一步对PCB的机械安装结构进行检查和确认。

第七:制版。在此之前,最好还要有一个审核的过程。
PCB设计是一个考心思的工作,谁的心思密,经验高,设计出来的板子就好。所以设计时要极其细心,充分考虑各方面的因数(比如说便于维修和检查这一项很多人就不去考虑),精益求精,就一定能设计出一个好板子

㈦ pcb如何布局线路好看

PCB布局设计
1:PCB布局设计时,应充分遵守沿信号流向直线放置的设计原则,尽量避免来回环绕。
2:避免信号直接耦合,影响信号质量
3:多种模块电路在同一PCB上放置时,数字电路与模拟电路、高速与低速电路应分开布局。
4:避免数字电路、模拟电路、高速电路以及低速电路之间的互相干扰。
5:避免高频电路噪声通过接口向外辐射。
6:存在较大电流变化的单元电路或器件(如电源模块的输入输出端、风扇及继电器)附近应放置储能和高频滤波电容。
7:储能电容的存在可以减小大电流回路的回路面积。
8:线路板电源输入口的滤波电路应靠近接口放置。
9:避免已经经过了滤波的线路被再次耦合。
10:在PCB板上,接口电路的滤波、防护以及隔离器件应该靠近接口放置。
11:可以有效的实现防护、滤波和隔离的效果
12:晶体、晶振、继电器、开关电源等强辐射器件远离单板接口连接器至少1000mil。
13:将干扰会直接向外辐射或在外出电缆上耦合出电流来向外辐射。
14:为IC滤波的各滤波电容应尽可能靠近芯片的供电管脚放置
15:电容离管脚越近,高频回路面积越小,从而辐射越小。

㈧ PCB设计怎样可以美美哒

走线和布局分清主次,多看,多画。