⑴ 指数平滑法R方为多少合理
平滑指数的取值通常在0点3到0点7之间。
采用较大的平滑指数,预测值可以反映样本值变动的长期趋势,这是由于因变量数据为季节性数据,因此平稳的R方更具代表性。拟合情况比较良好。
指数平滑法中最重要的一个参数是平滑常数α,α的取值范围是0到1,α值是主观选定的,值越大表示对未来的预测中越近期的数据权重越大。
⑵ r方一般多少说明拟合的好
r方一般0.999说明拟合的好。
在工程设计或科学实验中所得到的数据往往是一张关于离散数据点的表 ,没有解析式来描述 x-y关系。根据所给定的这些离散数据点绘制的曲线,称为不规则曲线,通常用曲线拟合的方法解决这类问题。
拟合优度检验:
主要是运用判定系数和回归标准差,检验模型对样本观测值的拟合程度。当解释变量为多元时,要使用调整的拟合优度,以解决变量元素增加对拟合优度的影响。
假定一个总体可分为r类,现从该总体获得了一个样本——这是一批分类数据,需要我们从这些分类数据中出发,去判断总体各类出现的概率是否与已知的概率相符。
⑶ 调整r方多大才有意义
接近1。
调整R方的解释与R方类似,不同的是:调整R方同时考虑了样本量(n)和回归中自变量的个数(k)的影响,这使得调整R方永远小于R方,而且调整R方的值不会由于回归中自变量个数的增加而越来越接近1。
因此,在多元回归分析中,通常用调整的多重判定系数来评价拟合效果。
R方的平方根称为多重相关系数,也称为复相关系数,它度量了因变量同k个自变量的相关程度。
注:SPSS中进行相关分析,一般只能得到两两之间的相关系数,因此,若要求复相关系数,可在多元回归中实现!
区别是系数不同。自变量个数的增加将影响到因变量中被回归方程所解释的变异比例,即会影响判定系数(R方)的大小。当增加自变量时,会使残差平方和减少,从而使R方变大。
如果模型中增加一个自变量,即使这个自变量在统计上并不显着,R方也会变大。因此,为避免增加自变量而高估R方,统计学家提出用样本量(n)和自变量的个数(k)去调整R方,计算出调整的多重判定系数(调整的R方)。
⑷ SOR理论模型回归分析R方多大合适
SOR理论模型回归分析R方0.9合适。
SOR 是认知主义提出的一种学习理论,是指刺激 —机体一响应 (Stimulus-Organism-Response,S-O-R)理论模型。
⑸ 固定效应回归R方多少合适
R方不高于0.9。
R_表示模型拟合能力的大小,比如0.3表示自变量X对于因变量Y有30%的解释能力。这个值介于0~1之间。
⑹ r方多少拟合度好
值越接近1就好。
拟合优度是指回归直线对观测值的拟合程度。度量拟合优度的统计量是可决系数(亦称确定系数)R²。R²最大值为1。R²的值越接近1,说明回归直线对观测值的拟合程度越好;反之,R²的值越小,说明回归直线对观测值的拟合程度越差。
R²衡量的是回归方程整体的拟合度,是表达因变量与所有自变量之间的总体关系。R²等于回归平方和在总平方和中所占的比率,即回归方程所能解释的因变量变异性的百分比(在MATLAB中,R²=1-"回归平方和在总平方和中所占的比率")。
实际值与平均值的总误差中,回归误差与剩余误差是此消彼长的关系。因而回归误差从正面测定线性模型的拟合优度,剩余误差则从反面来判定线性模型的拟合优度。
拟合优度检验:
主要是运用判定系数和回归标准差,检验模型对样本观测值的拟合程度。当解释变量为多元时,要使用调整的拟合优度,以解决变量元素增加对拟合优度的影响。
假定一个总体可分为r类,现从该总体获得了一个样本——这是一批分类数据,需要我们从这些分类数据中出发,去判断总体各类出现的概率是否与已知的概率相符。
譬如要检验一颗骰子是否是均匀的,那么可以将该骰子抛掷若干次,记录每一面出现的次数,从这些数据出发去检验各面出现的概率是否都是1/6,拟合优度检验就是用来检验一批分类数据所来自的总体的分布是否与某种理论分布相一致。
⑺ spss中r方为多少才可靠
0.3到0.5之间。
R方的高低不是判断模型好坏的很好的依据,主要看所估计阐述的符号是否与理论相符及其是否显着(t检验),模型总体显着性如何(F检验),还有d-w统计量等。其实一般大于0.3就ok了,虽然越大越好,但是0.5太高了一般很难达到。
SPSS(),"统计产品与服务解决方案"软件。最初软件全称为"社会科学统计软件包"(),但是随着SPSS产品服务领域的扩大和服务深度的增加,SPSS公司已于2000年正式将英文全称更改为"统计产品与服务解决方案",标志着SPSS的战略方向正在做出重大调整。为IBM公司推出的一系列用于统计学分析运算、数据挖掘、预测分析和决策支持任务的软件产品及相关服务的总称SPSS,有Windows和MacOSX等版本。
⑻ R方在多少以上算相关性较好
在arma,var等时间序列模型中,R方起码要在0.9以上才能说明模型构造的合理性。
对于微观数据模型,R方的取值不具有评价模型合理性的参考价值,可以不用管它。
⑼ r平方为多少拟合较好
值越接近1就好。
拟合优度是指回归直线对观测值的拟合程度。度量拟合优度的统计量是可决系数(亦称确定系数)R²。R²最大值为1。R²的值越接近1,说明回归直线对观测值的拟合程度越好;反之,R²的值越小,说明回归直线对观测值的拟合程度越差。
R²衡量的是回归方程整体的拟合度,是表达因变量与所有自变量之间的总体关系。R²等于回归平方和在总平方和中所占的比率,即回归方程所能解释的因变量变异性的百分比(在MATLAB中,R²=1-"回归平方和在总平方和中所占的比率")。
实际值与平均值的总误差中,回归误差与剩余误差是此消彼长的关系。因而回归误差从正面测定线性模型的拟合优度,剩余误差则从反面来判定线性模型的拟合优度。
拟合优度检验:
R平方越高,模型越适合您的数据。 在心理调查或研究中,我们通常发现低R平方值低于0.5。 这是因为我们试图预测人类行为,预测人类并不容易。
在这些情况下,如果R平方值很低,但有统计学上显着的独立变量(又称预测变量),仍然可以生成关于预测变量值中的变化如何与响应值变化相关联的见解。
当水平线比您的模型更好地解释数据时。 它主要发生在不包括截距的情况下。 没有截距,在预测目标变量方面,回归可能会比样本均值差。 这不仅是因为没有截距。 即使包含截距,它也可能是负的。在数学上,当模型的误差平方大于水平线上的总平方和时,这是可能的。
⑽ 多元线性逐步回归R方值一般要达到多少才好,我的值最后只有30%不知道可不可以用于论文
楼上此言差矣,调整R方值大于50%就已经很不错了。20-30%也是可以接受的,前提是模型中预测变量间不存在多重共线性等问题。关键看样本和实际问题。