当前位置:首页 » 自动清洗 » 怎样计算最好最坏平均时间复杂度
扩展阅读
大豆怎样炒最好吃 2025-05-14 13:40:22
手机怎样卸载电视软件 2025-05-14 13:33:36
怎样将软件加入白名 2025-05-14 13:33:35

怎样计算最好最坏平均时间复杂度

发布时间: 2022-04-25 10:00:18

1. 怎么判断时间复杂度好与坏

当n趋于无穷大时,哪个趋向的越慢就越好,越快就越坏:
O(1) < O(logn) < O(n) < O(n^3),越往右越差,最左最好,是常量

2. 如何计算一个算法的时间复杂度

你这个问题是自己想出来的吧?
第一,你指的时间复杂度是大o表示法的复杂度,也就是一个上界,但不是上确界,所以就算你以一种方式中断排序过程,时间复杂度还是o(n*logn),假设排序过程还能执行的话。
第二,达到o(n*logn)的排序算法,以快速排序为例,快速排序不知道你看过没有,它不像选择排序或者冒泡排序那样,每一趟可以确定一直最大或者最小值,对于快速排序,每一趟排序后如果你删掉最后一个元素将导致整个算法失效。如果你要用这种删除元素方法的话,只能采用冒泡排序或者选择排序,时间复杂度是o(n^2)
所以,我猜想你是不是想做类似于在n个元素中寻找前k个最大者之类的事情(k=n-l)
如果是这样的话,有复杂度是o(n*logk)的算法,利用快速排序中的partition操作
经过partition后,pivot左边的序列sa都大于pivot右边的序列sb;
如果|sa|==k或者|sa|==k-1,则数组的前k个元素就是最大的前k个元素,算法终止;
如果|sa|
k,则从sa中寻找前k大的元素。
一次partition(arr,begin,end)操作的复杂度为end-begin,也就是o(n),最坏情况下一次partition操作只找到第1大的那个元素,则需要进行k次partition操作,总的复杂度为o(n*k)。平均情况下每次partition都把序列均分两半,需要logk次partition操作,总的复杂度为o(n*logk)。
由于k的上界是n,所以以n表示的总复杂度还是o(n*logn)

3. 数据结构中算法的时间和空间复杂度怎么计算

你好.T(n)=O( f (n) ) 表示时间问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同.称作时间复杂度.如下:1.{++x;s=0}2.for (i=1;i<=n;++i) { ++x; s+=x;}3.for ( j=1; j<=n;++j ) for (k+1;j<=n;++k) { ++x;s+=x;}基本操作“x增1”的语句的频度分别为1.n和n的平方.则这三个程序段的时间复杂度分别为.O(1). O(n)..O(n平方).分别为常量阶.线性阶.和平方阶...算法可能呈现的时间复杂度还有对数阶O(long n).指数阶O(2 n方)等.空间复杂度:s(n)=O(f(n))其中n为问题的规模(或大小).一个上机执行的程序除了需要存储空间来寄存本身所用指令.常数.变量和输入数据外.也要一些对数据进行操作的工作单元和存储一些为实现计算所需信息的空间.若输入数据所占的空间只取决于问题本身,和算法无关,则只要分析除输入和程序之处的额处空间,否则应同时考虑输入本身所需空间...有点抽象...因为本人也学不好.所以.只能回答这些..见谅..

4. 算法的时间复杂度如何计算

关于时间复杂度的计算是按照运算次数来进行的,比如1题:
Sum1(
int
n
)
{
int
p=1,
sum=0,
m
;
//1次
for
(m=1;
m<=n;
m++)
//n+1次
{
p*=m
;
//n次
sum+=p
;
}
//n次
return
(sum)
;
//1次
}
最后总的次数为
1+(n+1)+n+n+1+1=3n+3
所以时间复杂度f(o)=n;(时间复杂度只管n的最高次方,不管他的系数和表达式中的常量)
其余的一样,不明白的可以来问我

5. 时间复杂度如何计算

一般不用最好情况,用的最多的是最坏情况,有时也用平均情况。例如,桶排序的最坏情况下时间复杂度是跟插入排序一样的,但是平均情况要比插入好多了。

6. 如何计算时间复杂度

一般情况下,算法的基本操作重复执行的次数是模块n的某一个函数f(n)。

因此,算法的时间复杂度记做:T(n)=O(f(n))。

随着模块n的增大,算法执行的时间的增长率和f(n)的增长率成正比,所以f(n)越小,算法的时间复杂度越低,算法的效率越高。

在计算时间复杂度的时候,先找出算法的基本操作,然后根据相应的各语句确定它的执行次数,再找出T(n)的同数量级(它的同数量级有以下:1,Log2n ,n ,nLog2n ,n的平方,n的三次方,2的n次方,n!),找出后,f(n)=该数量级,若T(n)/f(n)求极限可得到一常数c,则时间复杂度T(n)=O(f(n))。

7. 如何计算一个算法的时间复杂度

求解算法的时间复杂度的具体步骤是:

1、找出算法中的基本语句:

算法中执行次数最多的那条语句就是基本语句,通常是最内层循环的循环体。

2、计算基本语句的执行次数的数量级:

(1)只需计算基本语句执行次数的数量级,这就意味着只要保证基本语句执行次数的函数中的最高次幂正确即可,可以忽略所有低次幂和最高次幂的系数。

(2)这样能够简化算法分析,并且使注意力集中在最重要的一点上:增长率。

3、用大Ο记号表示算法的时间性能:

(1)将基本语句执行次数的数量级放入大Ο记号中。

(2)如果算法中包含嵌套的循环,则基本语句通常是最内层的循环体,如果算法中包含并列的循环,则将并列循环的时间复杂度相加。例如:

for(i=1;i<=n;i++)x++;for(i=1;i<=n;i++)
for(j=1;j<=n;j++)x++;

(3)第一个for循环的时间复杂度为Ο(n),第二个for循环的时间复杂度为Ο(n2),则整个算法的时间复杂度为Ο(n+n2)=Ο(n2)。

8. 算法在最坏情况,最好情况和平均情况下的计算复杂性概念及对三者时间复杂性的分析

计算复杂性目前主要用计算所消耗的资源数量来量度。由于算法在计算时所消耗的资源与问题规模有关,所以通常用递增函数来估计。另外,对具体问题实例,算法的资源消耗量是不同的,通常可以估计出最坏、最好和平均三种情形下对资源消耗的数量。对上述三者作时间复杂性分析的具体做法如下:以顺序查找为例,最坏情况是指需要搜索完所有的数据;最好情况是指搜索的第一个数据就是所要的数据;平均情况是指所获得的数据按其实际分布而言,平均需要查找比较的次数。

9. 如何计算时间复杂度

1、先找出算法的基本操作,然后根据相应的各语句确定它的执行次数,再找出T(n)的同数量级(它的同数量级有以下:1,Log2n ,n ,nLog2n ,n的平方,n的三次方,2的n次方,n!),找出后,f(n)=该数量级,若T(n)/f(n)求极限可得到一常数c,则时间复杂度T(n)=O(f(n))。

2、举例

for(i=1;i<=n;++i)

{for(j=1;j<=n;++j)

{c[ i ][ j ]=0; //该步骤属于基本操作 执行次数:n的平方次

for(k=1;k<=n;++k)

c[ i ][ j ]+=a[ i ][ k ]*b[ k ][ j ]; //该步骤属于基本操作 执行次数:n的三次方次}}

则有 T(n)= n的平方+n的三次方,根据上面括号里的同数量级,我们可以确定 n的三次方为T(n)的同数量级

则有f(n)= n的三次方,然后根据T(n)/f(n)求极限可得到常数c

则该算法的 时间复杂度:T(n)=O(n的三次方)

),线性阶O(n),线性对数阶O(nlog2n),平方阶O(n^2),立方阶O(n^3),...,

k次方阶O(n^k),指数阶O(2^n)。随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低。

关于对其的理解

《数据结构(C语言版)》 ------严蔚敏 吴伟民编着 第15页有句话“整个算法的执行时间与基本操作重复执行的次数成正比。”

基本操作重复执行的次数是问题规模n的某个函数f(n),于是算法的时间量度可以记为:T(n) = O(f(n))

如果按照这么推断,T(n)应该表示的是算法的时间量度,也就是算法执行的时间。

而该页对“语句频度”也有定义:指的是该语句重复执行的次数。

如果是基本操作所在语句重复执行的次数,那么就该是f(n)。

上边的n都表示的问题规模。

10. 快速排序的复杂度怎么算,是多少

这个,我确实一点也不懂,帮你搜索。

1.
快速排序-时空复杂度:
快速排序每次将待排序数组分为两个部分,在理想状况下,每一次都将待排序数组划分成等长两个部分,则需要logn次划分。
而在最坏情况下,即数组已经有序或大致有序的情况下,每次划分只能减少一个元素,快速排序将不幸退化为冒泡排序,所以快速排序时间复杂度下界为O(nlogn),最坏情况为O(n^2)。在实际应用中,快速排序的平均时间复杂度为O(nlogn)。
快速排序在对序列的操作过程中只需花费常数级的空间。空间复杂度S(1)。
但需要注意递归栈上需要花费最少logn最多n的空间。

2.快速排序-随机化算法:
快速排序的实现需要消耗递归栈的空间,而大多数情况下都会通过使用系统递归栈来完成递归求解。在元素数量较大时,对系统栈的频繁存取会影响到排序的效率。
一种常见的办法是设置一个阈值,在每次递归求解中,如果元素总数不足这个阈值,则放弃快速排序,调用一个简单的排序过程完成该子序列的排序。这样的方法减少了对系统递归栈的频繁存取,节省了时间的消费。
一般的经验表明,阈值取一个较小的值,排序算法采用选择、插入等紧凑、简洁的排序。一个可以参考的具体方案:阈值T=10,排序算法用选择排序。
阈值不要太大,否则省下的存取系统栈的时间,将会被简单排序算法较多的时间花费所抵消。
另一个可以参考的方法,是自行建栈模拟递归过程。但实际经验表明,收效明显不如设置阈值。

3.快速排序的最坏情况基于每次划分对主元的选择。基本的快速排序选取第一个元素作为主元。这样在数组已经有序的情况下,每次划分将得到最坏的结果。一种比较常见的优化方法是随机化算法,即随机选取一个元素作为主元。这种情况下虽然最坏情况仍然是O(n^2),但最坏情况不再依赖于输入数据,而是由于随机函数取值不佳。实际上,随机化快速排序得到理论最坏情况的可能性仅为1/(2^n)。所以随机化快速排序可以对于绝大多数输入数据达到O(nlogn)的期望时间复杂度。一位前辈做出了一个精辟的总结:“随机化快速排序可以满足一个人一辈子的人品需求。”
随机化快速排序的唯一缺点在于,一旦输入数据中有很多的相同数据,随机化的效果将直接减弱。对于极限情况,即对于n个相同的数排序,随机化快速排序的时间复杂度将毫无疑问的降低到O(n^2)。解决方法是用一种方法进行扫描,使没有交换的情况下主元保留在原位置。

4.设要排序的数组是A[0]……A[N-1],首先任意选取一个数据(通常选用第一个数据)作为关键数据,然后将所有比它小的数都放到它前面,所有比它大的数都放到它后面,这个过程称为一趟快速排序。一趟快速排序的算法是:
1)设置两个变量I、J,排序开始的时候:I=0,J=N-1;
2)以第一个数组元素作为关键数据,赋值给key,即 key=A[0];
3)从J开始向前搜索,即由后开始向前搜索(J=J-1),找到第一个小于key的值A[J],并与A[I]交换;
4)从I开始向后搜索,即由前开始向后搜索(I=I+1),找到第一个大于key的A[I],与A[J]交换;
5)重复第3、4、5步,直到 I=J; (3,4步是在程序中没找到时候j=j-1,i=i+1。找到并交换的时候i, j指针位置不变。另外当i=j这过程一定正好是i+或j+完成的最后另循环结束)
例如:待排序的数组A的值分别是:(初始关键数据:X=49) 注意关键X永远不变,永远是和X进行比较,无论在什么位子,最后的目的就是把X放在中间,小的放前面大的放后面。
A[0] 、 A[1]、 A[2]、 A[3]、 A[4]、 A[5]、 A[6]:
49 38 65 97 76 13 27
进行第一次交换后: 27 38 65 97 76 13 49
( 按照算法的第三步从后面开始找)
进行第二次交换后: 27 38 49 97 76 13 65
( 按照算法的第四步从前面开始找>X的值,65>49,两者交换,此时:I=3 )
进行第三次交换后: 27 38 13 97 76 49 65
( 按照算法的第五步将又一次执行算法的第三步从后开始找
进行第四次交换后: 27 38 13 49 76 97 65
( 按照算法的第四步从前面开始找大于X的值,97>49,两者交换,此时:I=4,J=6 )
此时再执行第三步的时候就发现I=J,从而结束一趟快速排序,那么经过一趟快速排序之后的结果是:27 38 13 49 76 97 65,即所以大于49的数全部在49的后面,所以小于49的数全部在49的前面。
快速排序就是递归调用此过程——在以49为中点分割这个数据序列,分别对前面一部分和后面一部分进行类似的快速排序,从而完成全部数据序列的快速排序,最