1. 伺服油压机常见故障有哪些
1、充液阀:充液阀泄漏,主缸上腔油液倒流回充液箱,主缸上腔建、不起压力。
2、油泵:柱塞、滑靴、回程盘磨损,内泄漏严重,导致了、系统压力升不高。
3、控制阀组:控制阀是系统压力的主要元件,出现故障时必定影响系统压力。如弹簧变形、锥阀磨损、阀卡死等等。
4、油缸:油缸是的执行元件,如果油缸里密封件损坏就会出现内泄漏或串腔系统压力升不高,严重会使油缸拉坏不能工作。
5、系统油温过高,导致原因:油箱内油量不足,因粘度低或泵有故障,增大了泵的内泄漏量,使泵壳温度升高。方法:换油、修理、更换液压泵 。
6、活塞杆不能动作,原因:油液未进入液压缸,密封件老化、失效,密封圈唇口装反或有破损,系统有故障,主要是泵或溢流阀有故障。方法:检查泵或溢流阀的故障原因并排除,更换密封件,并正确安装。
2. 伺服液压缸工作时抖动,什么原因
一般出现的原因可能下边情况
1、伺服阀“零漂”严重,造成液压缸控制出现问题
2、机械或执行元件阻力不均,外部影响,出现“爬行现象”
3、电器检测元件与伺服阀控制的频率不匹配,信号干扰造成
4、液压缸自身内泄,有气体造成的
5、其它信号干扰造成的。
3. 压力伺服阀的作用
同兴液压总汇生产压力伺服阀,压力伺服阀的作用有以下6点
1.用于刹车系统中,例如飞机机轮刹车系统,用于输出与输入电流成比例的刹车压力。
2.施力系统中,可选用流量伺服阀,也可选用压力伺服阀。但对材料试验机试件刚度很高的施力系统,宜选用压力伺服阀。原因在于选用流量伺服阀工作时,系统显现的阻尼要比选用压力伺服阀小,对电气增益变化很敏感,试件刚度很高时尤为显着。
3.负载容腔对系统动态特性很大,在系统设计时应尽量减小负载容腔。
4.压力控制伺服阀本身带有压力反馈,其压力增益特性平缓而呈线性,作为闭环控制中的一个元件使用也较理想。但这种阀的制造和调试较为复杂。
5.由于压力伺服阀的输入信号与输出负载压力有良好的线性关系,它与伺服缸或伺服马达相组合,能线性地输出力或力矩,因此对动态和静态要求不高的施力系统,可以采用开环控制方式,而对动、静态要求较高的场合,宜用闭环控制方式。凡采用闭环控制的施力系统,应在控制器的主通道串人积分环节,将零型系统变成
l
型系统,使系统有较高的控制精度。
6.试件刚度对材料试验机的动态特性影响很大,这是因为试件刚度低,活塞位移大,相应的负载流量大.相当于负载容腔变化大;试件刚度高,相当于负载容腔变化不大。
4. 伺服阀的原理
典型的伺服阀由永磁力矩马达、喷嘴、档板、阀芯、阀套和控制腔组成(见图)。当输入线圈通入电流时,档板向右移动,使右边喷嘴的节流作用加强,流量减少,右侧背压上升;同时使左边喷嘴节流作用减小,流量增加,左侧背压下降。阀芯两端的作用力失去平衡, 阀芯遂向左移动。高压油从S流向C2,送到负载。负载回油通过 C1流过回油口,进入油箱。阀芯的位移量与力矩马达的输入电流成正比,作用在阀芯上的液压力与弹簧力相平衡,因此在平衡状态下力矩马达的差动电流与阀芯的位移成正比。如果输入的电流反向,则流量也反向。表中是伺服阀的分类。
伺服阀主要用在电气液压伺服系统中作为执行元件(见液压伺服系统)。在伺服系统中,液压执行机构同电气及气动执行机构相比,具有快速性好、单位重量输出功率大、传动平稳、抗干扰能力强等特点。另一方面,在伺服系统中传递信号和校正特性时多用电气元件。因此,现代高性能的伺服系统也都采用电液方式,伺服阀就是这种系统的必需元件。
伺服阀结构比较复杂,造价高,对油的质量和清洁度要求高。新型的伺服阀正试图克服这些缺点,例如利用电致伸缩元件的伺服阀,使结构大为简化。另一个方向是研制特殊的工作油(如电气粘性油)。这种工作油能在电磁的作用下改变粘性系数。利用这一性质就可通过电信号直接控制油流。
5. 带液压伺服阀的液压系统压力波动有几种原因
引起系统压力波动的主要原因: ①调节压力的螺钉由于震动而使锁紧螺母松动造成压力波动; ②液压油不清洁,有微小灰尘存在,使主阀芯滑动不灵活。因而产生不规则的压力变化,有时还会将阀卡住; ③主阀芯滑动不畅造成阻尼孔时堵时通; ④主阀芯圆锥...
6. 液压系统中的伺服阀起什么作用啊
电液伺服阀
电液伺服阀既是电液转换元件,又是功率放大元件,它能够把微小的电气信号转换成大功率的液压能(流量和压力)输出。它的性能的优劣对系统的影响很大。因此,它是电液控制系统的核心和关键。为了能够正确设计和使用电液控制系统,必须掌握不同类型和性能的电液伺服阀。
伺服阀输入信号是由电气元件来完成的。电气元件在传输、运算和参量的转换等方面既快速又简便,而且可以把各种物理量转换成为电量。所以在自动控制系统中广泛使用电气装置作为电信号的比较、放大、反馈检测等元件;而液压元件具有体积小,结构紧凑、功率放大倍率高,线性度好,死区小,灵敏度高,动态性能好,响应速度快等优点,可作为电液转换功率放大的元件。因此,在一控制系统中常以电气为“神经”,以机械为“骨架”,以液压控制为“肌肉”最大限度地发挥机电、液的长处。
由于电液伺服阀的种类很多,但各种伺服阀的工作原理又基本相似,其分析研究的方法也大体相同,故今以常用的力反馈两级电液伺服阀和位置反馈的双级滑阀式伺服阀为重点,讨论它的基本方程、传递函数、方块图及其特性分析。其它伺服阀只介绍其工作原理,同时也介绍伺服阀的性能参数及其测试方法。
7. 伺服阀的工作原理是什么呢有正负流量之分,都把我给搞晕了!
射流管电液伺服阀的工作原理:
射流管电液伺服阀是力反馈两级流量控制阀力矩马达采用永磁结构,弹簧管支承着衔铁射流管组件,并使马达与液压部分隔离,所以力矩马达是干式的。前置级为射流放大器,它由射流管与接受器组成。当马达线圈输入控制电流,在衔铁上生成的控制磁通与永磁磁通相互作用,于是衔铁上产生一个力矩,促使衔铁、弹簧管、喷嘴组件偏转一个正比于力矩的小角度。经过喷嘴高速射流的偏转,使得接受器一腔压力升高,另一腔压力降低,连接这两腔的阀芯两端形成压差,阀芯运动直到反馈组件产生的力矩与马达力矩相平衡,使喷嘴又回到两接受器的中间位置为止。这样阀芯的位移与控制电流的大小成正比,阀的输出流量就比例于控制电流了。
正负流量是指阀的两个负载口的流量,只是根据输入电流信号正负极性的判断方式。
8. 液压伺服阀工作原理是什么
液压伺服阀结构及工作原理
一、滑阀式伺服阀:
采用动圈式力马达,结构简单,功率放大系数较大,滞环小和工作行程大;固定节流口尺寸大,不易被污物堵塞;主滑阀两端控制油压作用面积大,从而加大了驱动力,使滑阀不易卡死,工作可靠。
喷嘴挡板式伺服阀:
该伺服阀,由于力反馈的存在,使得力矩马达在其零点附近工作,即衔铁偏转角θ很小,故线性度好。此外,改变反馈弹簧杆11的刚度,就能在相同输入电流时改变滑阀的位移。该伺服阀结构紧凑,外形尺寸小,响应快。但喷嘴挡板的工作间隙较小,对油液的清洁度要求较高。
射流管式伺服阀:
对油液的清洁度要求较低。缺点是零位泄漏量大;受油液粘度变化影响显着,低温特差;力矩马达带动射流管,负载惯量大,响应速度低于喷嘴挡板阀。
滑阀式伺服阀
由永磁动圈式力马达、一对固定节流孔、预开口双边滑阀式前置液压放大器和三通滑阀式功率级组成。前置控制滑阀的两个预开口节流控制边与两个固定节流孔组成一个液压桥路。滑阀副的阀心(控制阀芯)直接与力马达的动圈骨架相连,(控制阀芯)在阀套内滑动。前置级的阀套又是功率级滑阀放大器的阀心。输入控制电流使力马达动圈产生的电磁力与对中弹簧的弹簧力相平衡,使动圈和前置级(控制级)阀心(控制阀芯)移动,其移量与动圈电流成正比。前置级阀心(控制阀芯)若向右移动,则滑阀右腔控制口·面积增大,右腔控制压力降低;左侧控制口·面积减小,左腔控制压力升高。该压力差作用在功率级滑阀阀心(即前置级的阀套)的两端上,使功率级滑阀阀心(主滑阀)向右移动,也就是前置级滑阀的阀套(主滑阀)向右移动,逐渐减小右侧控制孔的面积,直至停留在某位置。在此位置上,前置级滑阀副的两个可变节流控制孔的面积相等,功率级滑阀阀心(主滑阀)两端的压力相等。这种直接反馈的作用,使功率级滑阀阀心跟随前置级滑阀阀心运动,功率级滑阀阀心的位移与动圈输入电流大小成正比。
滑阀式伺服阀
由永磁动圈式力马达、一对固定节流孔、预开口双边滑阀式前置液压放大器和三通滑阀式功率级组成。前置控制滑阀的两个预开口节流控制边与两个固定节流孔组成一个液压路。滑阀副的阀心(控制阀芯)直接与力马达的动圈骨架相连,(控制阀芯)在阀套内滑动。前置级的阀套又是功率级滑阀放大器的阀心。
输入控制电流使力马达动圈产生的电磁力与对中弹簧的弹簧力相平衡,使动圈和前置级(控制级)阀心(控制阀芯)移动,其位移量与动圈电流成正比。前置级阀心(控阀芯)若向右移动,则滑阀右腔控制口·面积增大,右腔控制压力降低;左侧控制口面积减小,左腔控制压力升高。该压力差作用在功率级滑阀阀心(即前置级的阀套)的两端上,使功率级滑阀阀心主滑阀)向右移动,也就是前置级滑阀的阀套(主滑阀)向右移动,逐渐减小右侧控制孔的面积,直至停留在某一位置。在此位置上,前置级滑阀副的两个可变节流制孔的面积相等,功率级滑阀阀心(主滑阀)两端的压力相等。这种直接反馈的作用,使率级滑阀阀心跟随前置级滑阀阀心运动,功率级滑阀阀心的位移与动圈输入电流大小成比。