当前位置:首页 » 原因查询 » 哪些原因会导致一个控制系统失稳
扩展阅读
手机怎样上传截图 2025-06-15 13:52:45

哪些原因会导致一个控制系统失稳

发布时间: 2023-01-08 07:41:51

① 影响系统稳态误差的因素有哪些

①原理性误差为了跟踪输出量的期望值和由于外扰动作用的存在,控制系统在原理上必然存在的一类稳态误差。当原理性稳态误差为零时,控制系统称为无静差系统,否则称为有静差系统。原理性稳态误差能否消除,取决于系统的组成中是否包含积分环节(见控制系统的典型环节)。

②实际性误差系统的组成部件中的不完善因素(如摩擦、间隙、不灵敏区等)所造成的稳态误差。这种误差是不可能完全消除的,只能通过选用高精度的部件,提高系统的增益值等途径减小。

(1)哪些原因会导致一个控制系统失稳扩展阅读

在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。

为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。

这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。

② 系统稳定性与哪些因素

系统稳定性与哪些因素有关

系统稳定性与哪些因素有关,稳定性是指“测量仪器保持其计量特性随时间恒定的能力。通常稳定性是指测量仪器的计量特性随时间不变化的能力。以下分享系统稳定性与哪些因素有关。

系统稳定性与哪些因素1

夜幕降临

方法异常线上报警,定位日志,空指针异常,查询数据库结果为空,定位此业务线查询从库,数据库正常,查询结果正常,初步确定是主从延迟。问题在几秒钟恢复,影响次数个位数,接下来几个月数次出现此问题,直到双11备战第一天延迟更加严重了。

长夜慢慢

定位主从同步延迟问题了,查看从库的机器情况及慢日志。从库执行大量的删除某表记录操作,性能非常差。在看其执行语句,发现没有索引,在看下主库这张表上有这个索引。这种情况下为什么出现主从延迟高呢?在这里简单介绍下mysql主从同步原理。

mysql主从复制需要三个线程,masterbinlog mp thread、、slaveI/O thread 、SQL thread、。

master

1、 binlog mp线程: 当主库中有数据更新时,那么主库就会根据按照设置的binlog格式,将此次更新的事件类型写入到主库的binlog文件中,此时主库会创建log mp线程通知slave有数据更新,当I/O线程请求日志内容时,会将此时的binlog名称和当前更新的位置同时传给slave的I/O线程。

slave

2、I/O线程 :该线程会连接到master,向log mp线程请求一份指定binlog文件位置的副本,并将请求回来的binlog存到本地的relay log中,relay log和binlog日志一样也是记录了数据更新的事件,它也是按照递增后缀名的方式,产生多个relay log hostname-relay-bin.000001、文件,slave会使用一个index文件 hostname-relay-bin.index、来追踪当前正在使用的relay log文件。

3、SQL线程 :该线程检测到relay log有更新后,会读取并在本地做redo操作,将发生在主库的事件在本地重新执行一遍,来保证主从数据同步。此外,如果一个relay log文件中的全部事件都执行完毕,那么SQL线程会自动将该relay log 文件删除掉。

下面是整个复制过程的原理图:

结合以上的mysql主从同步原理,我们线上这次问题原因已经出来了,其实慢SQL只是我们原因的表象,更加深层次的原因是从库 SQL thread顺序执行Relay log的事件。执行任意事件性能不好的话都会给我们在来主从的高延迟。

黎明曙光

从库建立索引,降低主从延迟性,对线上业务影响无感知。

我们系统架构情况如下:

为了减少数据库主库的压力,每条业务线都有自己从库,目前我们数据库的情况是1主8从。如果说主从延迟非常高的话最明显的影响就是我们每条业务线的读延迟,依赖读的业务都会有问题。

主从延迟是影响我们系统稳定性的因素之一。如何降低主从延迟减少其对我们系统的影响?业界内减少主从延迟方案有多种下面简单介绍几种:

服务的基础架构在业务和mysql之间加入memcache或者Redis的cache层。降低mysql的读压力;

使用比主库更好的硬件设备作为slave;

sync_binlog在slave端设置为0;

–logs-slave-updates 从服务器从主服务器接收到的更新不记入它的二进制日志;

禁用slave的binlog。

系统稳定性与哪些因素2

系统的稳定性以及稳定性的几种定义

一、系统 研究系统的稳定性之前,

我们首先要对系统的概念有初步的认识。在数字信号处理的理论中,人们把能加工、变换数字信号的实体称作系统。由于处理数字信号的系统是在指定时刻或时序对信号进行加工运算所以这种系统被看作是离散时间的',也可以用基于时间的语言、表格、公式、波形等四种方法来描述。从抽象的意义来说,系统和信号都可以看作是

序列。但是,系统是加工信号的机构,这点与信号是不同的。人们研究系统还要设计系统,利用系统加工信号、

服务人类,系统还需要其它方法进一步描述。描述系统的方法还有符号、单位脉冲响应、差分方程和图形。中国学者钱学森认为:

系统是由相互作用相互依赖的若干组成部分结合而成的,具有特定功能的有机整体,而且这个有机整体又是它从属的更大系统的组成部分。

二、系统的稳定性

一个系统,若对任意的有界输入,其零状态响应也是有界的,则称该系统是有界输 有界输出(Bound Input Bound Output------ BIBO)稳定的系统,简称为稳定系统。即,若系统对所有的激励|f·)|≤Mf,其零状态响应|yzs(·)|≤My(M为有限常数),则称该系统稳定。

三、连续(时间)

系统与离散(时间)系统 连续系统:时间和各个组成部分的变量都具有连续变化形式的系统。系统的激励和响应均为连续信号。离散系统。当系统 各物理量随时间变化的规律不能用连续函描述时,而只在离散的瞬间给出数值,这种系统称为离散系统 。系统的激励和响应均为离散信号。

四、因果系统

因果系统 (causal system)是指当且仅当输入信号激励系统时,才会出现输出(响应)的系统。也就是说,因果系统的(响应)不会出现在输入信号激励系统的以前时刻。即输入的响应不可能在此输入到达的时刻之前出现的系统;也就是说系统的输出仅与当前与过去的输入有关,而与将来的输入无关的系统。

系统稳定性与哪些因素3

什么叫做稳定性

稳定性是指“测量仪器保持其计量特性随时间恒定的能力。通常稳定性是指测量仪器的计量特性随时间不变化的能力。若稳定性不是对时间而言,而是对其他量而言,则应该明确说明。稳定性可以进行定量的表征,主要是确定计量特性随时间变化的关系。自动控制系统的种类很多,完成的功能也千差万别,有的用来控制温度的变化,有的却要跟踪飞机的飞行轨迹。但是所有系统都有一个共同的特点才能够正常地工作,也就是要满足稳定性的要求。

仪器测量

通常可以用以下两种方式:用计量特性变化某个规定的量所需经过的时间,或用计量特性经过规定的时间所发生的变化量来进行定量表示。例如:对于标准电池,对其长期稳定性(电动势的年变化幅度)和短期稳定性(3~5天内电动势变化幅度)均有明确的要求;如量块尺寸的稳定性,以其规定的长度每年允许的最大变化量(微米年)来进行考核,上述稳定性指标均是划分准确度等级的重要依据。

对于测量仪器,尤其是基准、测量标准或某些实物量具,稳定性是重要的计量性能之一,示值的稳定是保证量值准确的基础。测量仪器产生不稳定的因素很多,主要原因是元器件的老化、零部件的磨损、以及使用、贮存、维护工作不仔细等所致。测量仪器进行的周期检定或校准,就是对其稳定性的一种考核。稳定性也是科学合理地确定检定周期的重要依据之一。 [1]

示例

什么叫稳定性呢?我们可以通过一个简单的例子来理解稳定性的概念。一个钢球分别放在不同的两个木块上,A图放在木块的顶部,B图放在木块的底部。如果对钢球施加一个力,使钢球离开原来的位置。A图的钢球就会向下滑落,不会再回到原来的位置。而B图的钢球由于地球引力的作用,会在木块的底部做来回的滚动运动,当时间足够长时,小球最终还是要回到原来的位置。我们说A图的情况就是不稳定的,而B图的情况就是稳定的。

上面给出的是一个简单的物理系统,通过它我们对于稳定性有了一个基本的认识。稳定性可以这样定义:当一个实际的系统处于一个平衡的状态时就相当于小球在木块上放置的状态一样、如果受到外来作用的影响时相当于上例中对小球施加的力、,系统经过一个过渡过程仍然能够回到原来的平衡状态,我们称这个系统就是稳定的,否则称系统不稳定。一个控制系统要想能够实现所要求的控制功能就必须是稳定的。在实际的应用系统中,由于系统中存在储能元件,并且每个元件都存在惯性。这样当给定系统的输入时,输出量一般会在期望的输出量之间摆动。此时系统会从外界吸收能量。对于稳定的系统振荡是减幅的,而对于不稳定的系统,振荡是增幅的振荡。前者会平衡于一个状态,后者却会不断增大直到系统被损坏。

判别

既然稳定性很重要,那么怎么才能知道系统是否稳定呢?控制学家们给我们提出了很多系统稳定与否的判定定理。这些定理都是基于系统的数学模型,根据数学模型的形式,经过一定的计算就能够得出稳定与否的结论,这些定理中比较有名的有:劳斯判据、赫尔维茨判据、李亚谱若夫三个定理。这些稳定性的判别方法分别适合于不同的数学模型,前两者主要是通过判断系统的特征值是否小于零来判定系统是否稳定,后者主要是通过考察系统能量是否衰减来判定稳定性。

当然系统的稳定性只是对系统的一个基本要求,一个令人满意的控制系统必须还要满足许多别的指标,例如过渡时间、超调量、稳态误差、调节时间等。一个好的系统往往是这些方面的综合考虑的结果。

③ 为什么闭环控制系统会产生不稳定现象

原因很多,常见的有:1正反馈负反馈错了2反馈的延时没掌握好太长或太短3控制的参数或方式没调好4对现场工艺不了解有未知因素参与

④ 为什么闭环控制系统会产生不稳定现象

闭环控制系统是需要通过调节环路保证相位裕量和增益裕量足够才能保证系统稳定的。所以产生不稳定现象很有可能就是环路裕量不够,当然也有可能是焊接问题等

⑤ 系统的稳定性取决于哪些因素

系统的稳定性取决于哪些因素

系统的稳定性取决于哪些因素,稳定性取决的因素有很多,但往往发挥关键作用的只有几个,那么,系统的稳定性取决于哪些因素,下面就让我们一起来看一下吧,希望可以帮助到你。

系统的稳定性取决于哪些因素1

取决于稳定性,快速性,准确性。

稳定性:

对恒值系统要求当系统受到扰动后,经过一定时间的调整能够回到原来的期望值。

对随动系统,被控制量始终跟踪参据量的变化。稳定性是对系统的基本要求,不稳定的系统不能实现预定任务。稳定性,通常由系统的结构决定与外界因素无关。

快速性:

对过渡过程的形式和快慢提出要求,一般称为动态性能。稳定高射射角随动系统,虽然炮身最终能跟踪目标,但如果目标变动迅速,而炮身行动迟缓,仍然抓不住目标。

准确性:

用稳态误差来表示。如果在参考书如信号作用下,当系统达到稳态后,其稳态输出与参考输入所要求的期望输出之差叫做给定稳态误差。显然,这种误差越小,表示系统的输出跟随参考输入的精度越高。

(5)哪些原因会导致一个控制系统失稳扩展阅读:

过载保护是过电流保护中的一种。引起电动机过载的原因很多,如负载的突然增加、缺相运行或电源电压降低等。若电动机长期过载运行,其绕组的温升将超过允许值而使绝缘老化、损坏。

过载保护装置要求具有反时限特性,且不会受电动机短时过载冲击电流或短路电流的影响而瞬时动作,所以通常用热继电器作过载保护。

当有6倍以上额定电流通过热继电器时,需经5s后才动作,这样在热继电器未动作前,可能先烧坏热继电器的发热元件,所以在使用热继电器作过载保护时,还必须装有熔断器或低压断路器的短路保护装置。

由于过载保护特性与过电流保护不同,故不能用过电流保护方法来进行过载保护。

系统的稳定性取决于哪些因素2

影响结构稳定性的因素有多种,主要有重心位置的高低、结构与地面接触所形成的支撑面的大小和结构的形状等。从力学角度来说,结构指可承受一定力的架构形态,可以抵抗能引起形状和大小改变的力。

结构在负载的作用下维持其原有平衡的能力,结构的稳定指结构整体的稳定,假设其是刚体。支撑面在水平面,结构稳定性好具体规定为不容易倾倒。如单脚撑自行车、照相机的三角架、啤酒瓶、方木块等。

(5)哪些原因会导致一个控制系统失稳扩展阅读:

结构的整体稳定性,在纵向结构中,主要取决于结构的支撑体系来保证,如钢柱之间的支撑、钢屋架的水平支撑和垂直支撑等。计算主要考虑支撑体系能够可靠地传递结构的纵向水平荷载,风荷载、地震荷载、起重机荷载等。

在结构横向上,主要取决于结构本身,框架或弯架的刚度,确保计算主要考虑结构本身能否可靠地传递结构的水平荷载。

系统的稳定性取决于哪些因素3

影响结构稳定性的因素有多种,主要有重心位置的.高低、结构与地面接触所形成的支撑面的大小和结构的形状等。

从力学角度来说,结构是指可承受一定力的架构形态,它可以抵抗能引起形状和大小改变的力。钢结构相对于混凝土来说,其优势相对较多,所以钢结构的应用较为广泛。

而失稳是指钢结构的承受能力达到一定状态从而失去稳定性。由钢结构失稳而导致的事故在工程中比较多。而想要从根本上控制钢结构失稳事故的发生。

(5)哪些原因会导致一个控制系统失稳扩展阅读:

失稳类型和特点

从总体来说,钢结构失稳大体分为整体和局部的失稳。从性质上讲,钢结构失稳又分为两类。

1、跃越失稳。

对于跃越失稳来说,其没有平衡分岔点,也没有支点,但也有失稳问题。该类结构主要是一个平衡位形突然向另一个平衡位形跳跃,这样会导致一些很大的变形出现。

2、平衡分布失稳。

平衡失稳的问题主要是完整的轴心以及中面受外力的作用从而导致失稳。平衡分岔失稳还被称为分支点失稳,是钢结构稳定问题中的重要问题,平衡失稳还包括受压的圆柱壳等。在稳定问题中又有稳定分岔失稳和不稳定分岔失稳之分。

⑥ 影响plc控制系统稳定性的因素有哪些

1.前言

饲料称量包装的准确与否将直接影响到企业的信誉和经济效益。过去采用机械称量、人工装袋,劳动强度大、速度慢、精度低。近几年,采用电子称量装置虽然可使其静态称量精度大大提高,但在饲料加工连续生产过程中,其动态精度仍不能保证。因此,在快速自动称量中如何提高动态称量精度,一直是饲料加工企业急需解决的难题。

本文是作者在研制饲料自动化生产设备中,为了与配料过程相协调,实现饲料生产的全部自动化,应用PLC作为动态称量包装测控设备,在硬件和软件设计中采用了一些措施和动态控制方法,较好地兼顾了称量速度与精度的矛盾,实现了饲料连续生产中动态称重计量的精度。

2.系统总体框图及工作原理

用称重传感器、放大器和PLC组成测控系统来完成饲料的称重、计量、包装的生产工艺过程,如图1所示。该系统以PLC为核心,配以称重传感器、放大器、各种电动执行器和机械装置,实现饲料的动态在线称重计量和包装工作。

称斗的上方是成品仓,该仓中的原料是来至饲料混合工序生产的饲料散状成品料。成品仓下是一台电动机驱动的螺旋进料装置,启动电动机,则该成品仓中的粉状饲料就随着传输绞笼的旋转而进入称斗中称量。称斗上装有三个S梁式应变式拉力传感器,称斗的重量信号直接由该传感器组转换成与之对应的电压信号,经放大器把该电压信号放大后送入PLC中进行数据处理,当达到预定值时,PLC控制停止下料,然后PLC控制开称斗门,并控制打包机自动装袋后由传送带送出。于是,就完成了饲料称量打包的自动化过程。

3.提高动态称重精度的硬件措施

该系统用三个拉力传感器将饲料重量W变换为成线性关系的电压信号Ux,并通过两级放大器进行放大。图中Un表示等效到放大器输入端的噪声和干扰电压,ΔUi表示等效到输入端的漂移电压。设两级放大器的放大倍数为A,则Uo=A(Ux+Un+ΔUi)=AUx+AUn+A·ΔUi式中的第2项主要影响灵敏度,第三项主要影响系统的精度。

(1)影响传感器的因素及解决办法

传感器输出信号的稳定性除决定传感器本身的性能外,还与供电电源和传感器的安装有密切关系。本系统采用UH61-100u型三只称重传感器,每只传感器单独供电,通过调节其桥路电压使三只传感器的输出灵敏度K相同,三只传感器串联输出的电压为Ux=K(E1+E2+E3)。为了提高每个传感器供桥电源的稳定性采用二次稳压,并对元器件进行老化、测试后进行选配,特别是对基准稳压管2DW233的老化处理和时漂测试,选择时漂小的通过调节其工作电流使其工作在接近零温度系数(<2ppm/℃)下,使整个传感器电源的温度稳定性优于10ppm/℃。三只拉力传感器安装在称斗和称架之间。如果传感器承受的重量与传感器轴线存有ɑ角,则将产生横向分力而引入误差ΔW=W-Wcosɑ.这对于每次称重25Kg,在称斗皮重为100Kg的情况下,即三只100Kg的传感器实际荷重为125Kg。当ɑ=4°时,称重误差就为0.43Kg。因此,安装传感器时应设法确保传感器都能垂直受力。

(2)影响系统灵敏度的因素及解决办法

影响系统灵敏度的主要因素是检测电路的内部噪声和外部干扰电压Un,它与放大器所工作的频带相关。在研制中,通过选择低噪声器件,在满足采集速度所需足够宽的频带的前提下,通过选配电阻来提高放大电路本身的共模抑制能力,整个检测系统采用双层屏蔽,采样时间选为工频周期整数倍等项措施,使整个系统获得了能分辨5g重量的灵敏度。

(3)影响准确度的主要因素及解决办法

影响准确度的主要因素是整个检测系统的非线性和漂移ΔUi。其中系统的非线性,在选配元器件校正的基础上,采用了软件修正;而对于随温度和时间产生的漂移电压ΔUi,主要采用元器件的老化、测试与分选工艺,筛选掉时漂大的,然后选配温度系数进行补偿,使整个系统的静态精度达到了0.07%,为实现动态称量精度奠定了基础。

4.提高动态称重精度的软件措施

影响动态称重精度的主要因素是被称物料的比重、流量和落差的大小,它是由成品料仓的压力和PLC所控制的进料驱动装置产生的。因此,改进控制思路,借鉴静态称量精度高的特点是提高动态计量精度的关键。为此,我们选用双速变径变距螺旋加料机,采用"先快后慢,最后点动"的控制下料方式,如图2所示。图中:Wx0为称量前PLC所采集的称斗皮重;由此PLC按照每包计量净重量的90%、95%和100%算出快速下料的终了值Wx1、慢速下料终了值Wx2和称量终了值Wx。其控制过程可以这样简单说明:在下料开始一段时间,PLC控制绞笼电动机快速下料,当检测达到快速下料的终了值Wx1时,PLC控制绞笼电动机开始慢速下料;当检测达到慢速下料的终了值Wx2时,PLC关闭绞笼电动机后采用"点动"下料,当达到或接近期望值Wx时为止。

按照上述思路,通过编写全动态控制加料的快慢、速加料和点动下料的软件模块;以及为消除空中落料对称量精度的影响,所编写的自动寻找提前停机量的软件模块等软件措施。该系统使用一年来,经计量部门两次测试,整个系统动态计量准确度优于0.2%。

5.结论

采用PLC控制进行饲料称重包装,具有结构简单、计量准确、工作可靠,较好的兼顾了动态称重计量的精度和速度,满足了在线快速动态重量计量的要求,对水泥、食盐、面粉等的称重包装有借鉴作用和推广价值。

原文网址:

⑦ 系统破坏失稳机理与稳定性分析

系统发生突变失稳充要条件中与水有关的力学参数主要包括煤层顶板岩梁的弹性模量、桩柱体弹性模量和顶板岩层荷载。

(1)水对系统突变失稳必要条件(k0≤1)的影响。

如果没有水的影响,参数k0是一定值,如图5.8 中的直线所示;在水的作用下,煤层顶板岩梁的弹性模量随含水量的增加而相应降低,降低的幅值为

,而桩柱体由于浆液的渗入,具有一定的防水性,其相关系数K1和含水量ω1与顶板岩层相比受水的影响相对较小,即

,结果导致k0随含水量的增加而降低,如图5.8中的曲线所示,其减小的幅值为Δk,造成系统更容易满足失稳的必要条件(k0≤1),从而降低了系统的临界安全系数,增加了系统发生突变失稳的可能性。

图5.8 失稳条件与含水率的关系曲线

(2)水对系统突变失稳必要条件(1+k0-k1<0)的影响。

由于水的影响,增加了煤层顶板岩层的容重,即增加了均布荷载,增加量为K2ω2,这样在系统突变失稳必要条件中,k0的数值减小,k1的数值增大,最终导致多项式1+k0-k1的值变小,同样增加了满足系统发生突变失稳条件的可能性。

(3)当P<0,并且满足

时,平衡曲面方程M有三个实根,即

水及动力荷载作用下浅伏采空区围岩变形破坏研究

因此系统在跨越分叉集时状态变量的突变量为

水及动力荷载作用下浅伏采空区围岩变形破坏研究

上述突变过程说明了处于相对平衡的采空区系统在水的作用下,顶板岩层和桩柱体的强度因水的软化作用会有一定程度的降低,而上覆岩层的容重因水的入渗而增大,顶板岩层荷载相应会增大,导致采空区总势能函数容易满足交叉集方程,使采空区从一种平衡状态突变到另一种平衡状态。因水的作用,引起控制变量P、q中控制参数随含水量的变化而变化,导致控制变量向有利于突变的方向发展,使系统更容易满足突变失稳的条件,增加采空区突变失稳的可能性,即平衡曲面的下叶为系统处于变形失稳的孕育过程(如图5.9b),若系统处于临界状态,在外部动力荷载等因素的扰动下,诱发状态变量从下叶跃迁到上叶,增加量为Δx,同时系统从一种相对平衡状态经过失稳后转变为另一种相对平衡状态,如图5.9 c所示。

图5.9 分叉集、平衡曲面及状态变量的突跳